DOI QR코드

DOI QR Code

Establishment and Characterization of Immortalized Human Dermal Papilla Cells Expressing Human Papillomavirus 16 E6/E7

  • Seonhwa Kim (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kyeong-Bae Jeon (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Hyo-Min Park (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Jinju Kim (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Chae-Min Lim (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Do-Young Yoon (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2023.10.25
  • Accepted : 2023.11.11
  • Published : 2024.03.28

Abstract

Primary human dermal papilla cells (HDPCs) are often preferred in studies on hair growth and regeneration. However, primary HDPCs are limited by their reduced proliferative capacity, decreased hair induction potential, and extended doubling times at higher passages. To overcome these limitations, pTARGET vectors containing human papillomavirus16 (HPV16) E6/E7 oncogenes were transfected into HDPCs and selected using G-148 to generate immortalized cells here. HPV16 E6/E7 oncogenes were efficiently transfected into primary HDPCs. Immortalized HDPC showed higher proliferative activity than primary HDPC, confirming an increased proliferation rate. Expression of p53 and pRb proteins was downregulated by E6 and E7, respectively. E6/E7 expressing HDPC cells revealed that cyclin-dependent kinase (CDK) inhibitor p21 expression was decreased, while cell cycle-related genes and proteins (CDK2 and cyclin E) and E2F family genes were upregulated. Immortalized HDPCs maintained their responsiveness to Wnt/β-catenin pathway and hair follicle formation capability, as indicated by their aggregative properties and stemness. E6/E7 immortalized HDPCs may facilitate in vitro hair growth and regeneration studies.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (grant number 2021R1A2C3014577) and Konkuk University Researcher Fund in 2023. We thank our colleagues for their assistance with this study.

References

  1. Houschyar KS, Borrelli MR, Tapking C, Popp D, Puladi B, Ooms M, et al. 2020. Molecular mechanisms of hair growth and regeneration: current understanding and novel paradigms. Dermatology 236: 271-280. https://doi.org/10.1159/000506155
  2. Kwack MH, Yang JM, Won GH, Kim MK, Kim JC, Sung YK. 2018. Establishment and characterization of five immortalized human scalp dermal papilla cell lines. Biochem. Biophys. Res. Commun. 496: 346-351. https://doi.org/10.1016/j.bbrc.2018.01.058
  3. Yang CC, Cotsarelis G. 2010. Review of hair follicle dermal cells. J. Dermatol. Sci. 57: 2-11. https://doi.org/10.1016/j.jdermsci.2009.11.005
  4. Lee SH, Samuels T, Bock JM, Blumin JH, Johnston N. 2015. Establishment of an immortalized laryngeal posterior commissure cell line as a tool for reflux research. Laryngoscope 125: E73-77. https://doi.org/10.1002/lary.24952
  5. Cruz ELS, Loureiro FJA, Silva A, Ramos RT, Kataoka M, Pinheiro JJV, et al. 2022. Gene expression in cell lines from human ameloblastoma immortalized using hTERT and HPV16-E6/E7. Oral Dis. 28: 2230-2238. https://doi.org/10.1111/odi.13930
  6. Ye D, Zhou X, Pan H, Jiang Q, Zhong L, Chen W, et al. 2011. Establishment and characterization of an HPV16 E6/E7-expressing oral squamous cell carcinoma cell line with enhanced tumorigenicity. Med. Oncol. 28: 1331-1337. https://doi.org/10.1007/s12032-010-9558-4
  7. Zhan K, Lin M, Zhao QM, Zhan JS, Zhao GQ. 2016. Biological characterization of bovine mammary epithelial cell lines immortalized by HPV16 E6/E7 and SV40T. In Vitro Cell. Dev. Biol. Anim. 52: 906-910. https://doi.org/10.1007/s11626-016-0063-8
  8. Ghittoni R, Accardi R, Hasan U, Gheit T, Sylla B, Tommasino M. 2010. The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 40: 1-13. https://doi.org/10.1007/s11262-009-0412-8
  9. Hamid NA, Brown C, Gaston K. 2009. The regulation of cell proliferation by the papillomavirus early proteins. Cell. Mol. Life Sci. 66: 1700-1717. https://doi.org/10.1007/s00018-009-8631-7
  10. Pett M, Coleman N. 2007. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J. Pathol.212: 356-367. https://doi.org/10.1002/path.2192
  11. Araldi RP, Sant'Ana TA, Modolo DG, de Melo TC, Spadacci-Morena DD, de Cassia Stocco R, et al. 2018. The human papillomavirus (HPV)-related cancer biology: an overview. Biomed. Pharmacother. 106: 1537-1556. https://doi.org/10.1016/j.biopha.2018.06.149
  12. Arizmendi-Izazaga A, Navarro-Tito N, Jimenez-Wences H, Mendoza-Catalan MA, Martinez-Carrillo DN, Zacapala-Gomez AE, et al. 2021. Metabolic reprogramming in cancer: role of HPV 16 variants. Pathogens 10: 347.
  13. Fukuda T, Furuya K, Takahashi K, Orimoto A, Sugano E, Tomita H, et al. 2021. Combinatorial expression of cell cycle regulators is more suitable for immortalization than oncogenic methods in dermal papilla cells. iScience 24: 101929.
  14. Cho YS, Kang JW, Cho M, Cho CW, Lee S, Choe YK, et al. 2001. Down modulation of IL-18 expression by human papillomavirus type 16 E6 oncogene via binding to IL-18. FEBS Lett. 501: 139-145. https://doi.org/10.1016/S0014-5793(01)02652-7
  15. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to imageJ: 25 years of image analysis. Nat. Methods 9: 671-675. https://doi.org/10.1038/nmeth.2089
  16. Vieira GV, Somera Dos Santos F, Lepique AP, da Fonseca CK, Innocentini L, Braz-Silva PH, et al. 2022. Proteases and HPV-induced carcinogenesis. Cancers (Basel) 14: 3038.
  17. Shirasawa H, Jin MH, Shimizu K, Akutsu N, Shino Y, Simizu B. 1994. Transcription-modulatory activity of full-length E6 and E6*I E6*I proteins of human papillomavirus type 16. Virology 203: 36-42. https://doi.org/10.1006/viro.1994.1452
  18. Zheng Y, Li X, Jiao Y, Wu C. 2022. High-risk human papillomavirus oncogenic E6/E7 mRNAs splicing regulation. Front. Cell Infect. Microbiol. 12: 929666.
  19. Williams AB, Schumacher B. 2016. p53 in the DNA-Damage-Repair Process. Cold Spring Harb. Perspect. Med. 6: a026070.
  20. Chen J. 2016. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 6: a026104.
  21. Hernandez Borrero LJ, El-Deiry WS. 2021. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer 1876: 188556.
  22. Liu J, Zhang C, Hu W, Feng Z. 2019. Tumor suppressor p53 and metabolism. J. Mol. Cell Biol. 11: 284-292. https://doi.org/10.1093/jmcb/mjy070
  23. Engeland K. 2018. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 25: 114-132. https://doi.org/10.1038/cdd.2017.172
  24. Hafner A, Bulyk ML, Jambhekar A, Lahav G. 2019. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20: 199-210. https://doi.org/10.1038/s41580-019-0110-x
  25. Dutto I, Tillhon M, Cazzalini O, Stivala LA, Prosperi E. 2015. Biology of the cell cycle inhibitor p21(CDKN1A): molecular mechanisms and relevance in chemical toxicology. Arch. Toxicol. 89: 155-178. https://doi.org/10.1007/s00204-014-1430-4
  26. Abukhdeir AM, Park BH. 2008. P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev. Mol. Med. 10: e19.
  27. Karimian A, Ahmadi Y, Yousefi B. 2016. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst) 42: 63-71. https://doi.org/10.1016/j.dnarep.2016.04.008
  28. Hwang SG, Lee D, Kim J, Seo T, Choe J. 2002. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J. Biol. Chem. 277: 2923-2930. https://doi.org/10.1074/jbc.M109113200
  29. Engeland K. 2022. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 29: 946-960. https://doi.org/10.1038/s41418-022-00988-z
  30. Rubin SM, Sage J, Skotheim JM. 2020. Integrating old and new paradigms of G1/S control. Mol. Cell 80: 183-192. https://doi.org/10.1016/j.molcel.2020.08.020
  31. Makela JA, Toppari J. 2022. Retinoblastoma-E2F transcription factor interplay is essential for testicular development and male fertility. Front. Endocrinol (Lausanne). 13: 903684.
  32. Kent LN, Leone G. 2019. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 19: 326-338. https://doi.org/10.1038/s41568-019-0143-7
  33. Chen X, Liu B, Li Y, Han L, Tang X, Deng W, et al. 2019. Dihydrotestosterone regulates hair growth through the Wnt/beta-catenin pathway in C57BL/6 mice and in vitro organ culture. Front. Pharmacol. 10: 1528.
  34. Enshell-Seijffers D, Lindon C, Kashiwagi M, Morgan BA. 2010. Beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell 18: 633-642. https://doi.org/10.1016/j.devcel.2010.01.016
  35. Kiratipaiboon C, Tengamnuay P, Chanvorachote P. 2015. Glycyrrhizic acid attenuates stem cell-like phenotypes of human dermal papilla cells. Phytomedicine 22: 1269-1278. https://doi.org/10.1016/j.phymed.2015.11.002
  36. Osada A, Iwabuchi T, Kishimoto J, Hamazaki TS, Okochi H. 2007. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Eng. 13: 975-982. https://doi.org/10.1089/ten.2006.0304
  37. Bejaoui M, Oliva AK, Ke MS, Ferdousi F, Isoda H. 2022. 3D Spheroid human dermal papilla cell as an effective model for the screening of hair growth promoting compounds: examples of minoxidil and 3,4,5-Tri-O-caffeoylquinic acid (TCQA). Cells 11: 2093.
  38. Kang BM, Kwack MH, Kim MK, Kim JC, Sung YK. 2012. Sphere formation increases the ability of cultured human dermal papilla cells to induce hair follicles from mouse epidermal cells in a reconstitution assay. J. Invest. Dermatol. 132: 237-239. https://doi.org/10.1038/jid.2011.250
  39. Reynolds AJ, Jahoda CA. 1996. Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells. Development 122: 3085-3094. https://doi.org/10.1242/dev.122.10.3085
  40. Kobayashi T, Fujisawa A, Amagai M, Iwasaki T, Ohyama M. 2011. Molecular biological and immunohistological characterization of canine dermal papilla cells and the evaluation of culture conditions. Vet. Dermatol. 22: 414-422. https://doi.org/10.1111/j.1365-3164.2011.00964.x
  41. Havlickova B, Biro T, Mescalchin A, Tschirschmann M, Mollenkopf H, Bettermann A, et al. 2009. A human folliculoid microsphere assay for exploring epithelial- mesenchymal interactions in the human hair follicle. J. Invest. Dermatol. 129: 972-983. https://doi.org/10.1038/jid.2008.315
  42. Radisky DC, LaBarge MA. 2008. Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell. 2: 511-512. https://doi.org/10.1016/j.stem.2008.05.007
  43. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, et al. 2012. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148: 1015-1028. https://doi.org/10.1016/j.cell.2012.02.008
  44. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. 2004. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118: 635-648. https://doi.org/10.1016/j.cell.2004.08.012
  45. Driskell RR, Giangreco A, Jensen KB, Mulder KW, Watt FM. 2009. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136: 2815-2823. https://doi.org/10.1242/dev.038620