DOI QR코드

DOI QR Code

Biosynthesis of Apigenin Glucosides in Engineered Corynebacterium glutamicum

  • Obed Jackson Amoah (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Samir Bahadur Thapa (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Su Yeong Ma (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Hue Thi Nguyen (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Morshed Md Zakaria (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Jae Kyung Sohng (Department of Life Science and Biochemical Engineering, Sun Moon University)
  • Received : 2024.01.16
  • Accepted : 2024.02.24
  • Published : 2024.05.28

Abstract

Glucosylation is a well-known approach to improve the solubility, pharmacological, and biological properties of flavonoids, making flavonoid glucosides a target for large-scale biosynthesis. However, the low yield of products coupled with the requirement of expensive UDP-sugars limits the application of enzymatic systems for large-scale. C. glutamicum is a Gram-positive and generally regarded as safe (GRAS) bacteria frequently employed for the large-scale production of amino acids and biofuels. Due to the versatility of its cell factory system and its non-endotoxin producing properties, it has become an attractive system for the industrial-scale biosynthesis of alternate products. Here, we explored the cell factory of C. glutamicum for efficient glucosylation of flavonoids using apigenin as a model flavonoid, with the heterologous expression of a promiscuous glycosyltransferase, YdhE from Bacillus licheniformis and the endogenous overexpression of C. glutamicum genes galU1 encoding UDP-glucose pyrophosphorylase and pgm encoding phosphoglucomutase involved in the synthesis of UDP-glucose to create a C. glutamicum cell factory system capable of efficiently glucosylation apigenin with a high yield of glucosides production. Consequently, the production of various apigenin glucosides was controlled under different temperatures yielding almost 4.2 mM of APG1(apigenin-4'-O-β-glucoside) at 25℃, and 0.6 mM of APG2 (apigenin-7-O-β-glucoside), 1.7 mM of APG3 (apigenin-4',7-O-β-diglucoside) and 2.1 mM of APG4 (apigenin- 4',5-O-β-diglucoside) after 40 h of incubation with the supplementation of 5 mM of apigenin and 37℃. The cost-effective developed system could be used to modify a wide range of plant secondary metabolites with increased pharmacokinetic activities on a large scale without the use of expensive UDP-sugars.

Keywords

Acknowledgement

This work was carried out with the support of a grant by the Technology Innovation Program (20014827) funded By the Ministry of Trade, Industry & Energy (MOTIE), Republic of Korea. We would like to thank the Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk, Korea for NMR analyses.

References

  1. Pandey RP, Parajuli P, Koffas MAG, Sohng JK. 2016. Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 34: 634-662.
  2. Correa MJC, Nunes FM, Bitencourt HR, Borges FC, Guilhon GMSP, Arruda MSP, et al. 2011. Biotransformation of chalcones by the endophytic fungus Aspergillus flavus isolated from Paspalum maritimum Trin. J. Braz. Chem. Soc. 22: 1333-38
  3. Tohge T, De Souza LP, Fernie AR. 2017. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J. Exp. Bot. 68: 4013-4028.
  4. Sheng H, Sun X, Yan Y, Yuan Q, Wang J, Shen X. 2020. Metabolic engineering of microorganisms for the production of flavonoids. Front. Bioeng. Biotechnol. 8: 589-069.
  5. Panche AN, Diwan AD, Chandra SR. 2016. Flavonoids: an overview. J. Nutr. Sci. 5: 1-15.
  6. Shrestha A, Pandey RP, Dhakal D, Parajuli P, Sohng JK. 2018. Biosynthesis of flavone C-glucosides in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 102: 1251-1267.
  7. Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Iahtisham-Ul-Haq, et al. 2019. Chrysin: pharmacological and therapeutic properties. Life Sci. 235: 1167-1197.
  8. Luzny M, Tronina T, Kozlowska E, Dymarska M, Poplonski J, Lyczko J, et al. 2020. Biotransformation of methoxyflavones by selected entomopathogenic filamentous fungi. Int. J. Mol. Sci. 21: 1-22.
  9. Huang YS, Ho SC. 2010. Polymethoxy flavones are responsible for the anti-inflammatory activity of citrus fruit peel. Food Chem. 119: 868-873.
  10. Wang T yang, Li Q, Bi K shun. 2018. Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J. Pharm. Sci. 13: 12-23.
  11. Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, et al. 2017. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 110: 286-299.
  12. Dymarska M, Janeczko T, Kostrzewa-Suslow E. 2018. Biotransformations of flavones and an isoflavone (daidzein) in cultures of entomopathogenic filamentous fungi. Molecules 23: 1356
  13. Choi SH, Ryu M, Yoon YJ, Kim DM, Lee EY. 2012. Glycosylation of various flavonoids by recombinant oleandomycin glycosyltransferase from Streptomyces antibioticus in batch and repeated batch modes. Biotechnol. Lett. 34: 499-505.
  14. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. 2011. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int. J. Pharm. 420: 1-10.
  15. Jang SW, Cho CH, Jung YS, Rha C, Nam TG, Kim DO, et al. 2018. Enzymatic synthesis of α-flavone glucoside via regioselective transglucosylation by amylosucrase from Deinococcus geothermalis. PLoS One 13: 0207466.
  16. Thuan NH, Sohng JK. 2013. Recent biotechnological progress in enzymatic synthesis of glycosides. J. Ind. Microbiol. Biotechnol. 40: 1329-1356.
  17. Xiao J, Muzashvili TS, Georgiev MI. 2014. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv. 32: 1145-1156.
  18. Bosch D, Castilho A, Loos A, Schots A, Steinkellner H. 2013. N-Glycosylation of plant-produced recombinant proteins. Curr. Pharm. Des. 19: 5503-5512.
  19. Thuan NH, Chaudhary AK, Van Cuong D, Cuong NX. 2018. Engineering co-culture system for production of apigetrin in Escherichia coli. J. Ind. Microbiol. Biotechnol. 45: 175-185.
  20. Gutmann A, Bungaruang L, Weber H, Leypold M, Breinbauer R, Nidetzky B. 2014. Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase-catalysed cascade reactions. Green Chem. 16: 4417-4425.
  21. Ji Y, Li B, Qiao M, Li J, Xu H, Zhang L, et al. 2020. Advances on the in vivo and in vitro glycosylations of flavonoids. Appl. Microbiol. Biotechnol. 104: 6587-6600.
  22. Pandey RP, Malla S, Simkhada D, Kim BG, Sohng JK. 2013. Production of 3-O-xylosyl quercetin in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 1889-1901.
  23. Wang H, Yang Y, Lin L, Zhou W, Liu M, Cheng K, et al. 2016. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Microb. Cell. Fact. 15: 134.
  24. Henke NA, Peters-Wendisch P, Wendisch VF. 2017. Carotenoid production by Corynebacterium: The Workhorse of Industrial Amino Acid Production as Host for Production of a Broad Spectrum of C40 and C50 Carotenoids, Carotenoids. InTech. Chapter 10.
  25. Kranz A, Polen T, Kotulla C, Arndt A, Bosco G, Bussmann M, et al. 2022. A manually curated compendium of expression profiles for the microbial cell factory Corynebacterium glutamicum. Sci. Data 9: 594.
  26. Baritugo KA, Kim HT, David Y, Choi J il, Hong SH, Jeong KJ, et al. 2018. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl. Microbiol. Biotechnol. 102: 3915-3937.
  27. Wang Y, Hu L, Huang H, Wang H, Zhang T, Chen J, et al. 2020. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat. Commun. 11: 3120
  28. Liu W, Zhu X, Lian J, Huang L, Xu Z. 2019. Efficient production of glutathione with multi-pathway engineering in Corynebacterium glutamicum. J. Ind. Microbiol. Biotechnol. 46: 1685-1695.
  29. Wieschalka S, Blombach B, Bott M, Eikmanns BJ. 2013. Bio-based production of organic acids with Corynebacterium glutamicum. Microb. Biotechnol. 6: 87-102.
  30. Kogure T, Inui M. 2018. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Appl. Microbiol. Biotechnol. 102: 8685-8705.
  31. Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, et al. 2015. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 99: 1165-1172.
  32. Kallscheuer N, Vogt M, Stenzel A, Gatgens J, Bott M, Marienhagen J. 2016. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab. Eng. 38: 47-55.
  33. Milke L, Aschenbrenner J, Marienhagen J, Kallscheuer N. 2018. Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl. Microbiol. Biotechnol. 102: 1575-1585.
  34. Gauttam R, Desiderato CK, Rados D, Link H, Seibold GM, Eikmanns BJ. 2021. Metabolic engineering of Corynebacterium glutamicum for production of UDP-N-Acetylglucosamine. Front. Bioeng. Biotechnol. 9: 748510.
  35. Becker J, Rohles CM, Wittmann C. 2018. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab. Eng. 50: 122-141.
  36. Mimitsuka T, Sawai H, Hatsu M, Yamada K. 2007. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci. Biotechnol. Biochem. 71: 2130-2135.
  37. Heider SAE, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF. 2014. Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 98: 1223-1235.
  38. Amoah OJ, Nguyen HT, Sohng JK. 2022. N-Glucosylation in Corynebacterium glutamicum with YdhE from Bacillus lichenformis. Molecules 27: 3405.
  39. Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, et al. 2017. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 8: 151-179.
  40. Seibold GM, Eikmanns BJ. 2013. Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism. Biosci. Rep. 33: 645-654.
  41. Zha J, Zang Y, Mattozzi M, Plassmeier J, Gupta M, Wu X, et al. 2018. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Microb. Cell. Fact. 17: 143.
  42. Mizuno H, Tsuge Y. 2021. Elevated, non-proliferative temperatures change the profile of fermentation products in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 105: 367-377.
  43. Wang J, Zhou RG, Wu T, Yang T, Qin QX, Li L, et al. 2012. Total synthesis of apigenin. J. Chem. Res. 36: 121-122.
  44. Schmolzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B. 2016. Sucrose synthase: a unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnol. Adv. 34: 88-111.
  45. Darsandhari S, Pandey RP, Shrestha B, Parajuli P, Liou K, Sohng JK. 2018. One-Pot Multienzyme Cofactors Recycling (OPME-CR) system for lactose and non-natural saccharide conjugated polyphenol production. J. Agric. Food Chem. 66: 7965-7974.
  46. Yuan S, Yin S, Liu M, Kong JQ. 2018. Isolation and characterization of a multifunctional flavonoid glycosyltransferase from Ornithogalum caudatum with glycosidase activity. Sci. Rep. 8: 5886.
  47. Gurung RB, Kim EH, Oh TJ, Sohng JK. 2013. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Mol. Cells 36: 355-361.
  48. Pandey RP, Parajuli P, Koirala N, Lee JH, Park Y Il, Sohng JK. 2014. Glucosylation of isoflavonoids in engineered Escherichia coli. Mol. Cells 37: 172-177.
  49. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N. 2007. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol. J. 2: 1214-1234.
  50. Tartik M, Liu J, Mohedano MT, Mao J, Chen Y. 2023. Optimizing yeast for high-level production of kaempferol and quercetin. Microb. Cell. Fact. 22: 74.
  51. Mizuno H, Tsuge Y. 2021. Elevated, non-proliferative temperatures change the profile of fermentation products in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 105: 367-377.
  52. Delaunay S, Gourdon P, Lapujade P, Mailly E, Oriol E, Engasser JM, et al. 1999. An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum. Enzyme Microb. Technol. 25: 8-9.
  53. Willits MG, Giovanni M, Prata RTN, Kramer CM, De Luca V, Steffens JC, et al. 2004. Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites. Phytochemistry 65: 31-41.
  54. Wang M, Firrman J, Liu LS, Yam K. 2019. A review on flavonoid apigenin: dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomed Res. Int. 2019: 7010467.
  55. Zhao L, Pei Y, Zhang G, Li J, Zhu Y, Xia M, et al. 2023. Efficient synthesis and in vitro hypoglycemic activity of rare apigenin glycosylation derivatives. Molecules 28: 533.