DOI QR코드

DOI QR Code

Research Progress on Strategies for Improving the Enzyme Properties of Bacteriophage Endolysins

  • Yulu Wang (Shunde Women and Children's Hospital, Guangdong Medical University) ;
  • Xue Wang (Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University) ;
  • Xin Liu (Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University) ;
  • Bokun Lin (Shunde Women and Children's Hospital, Guangdong Medical University)
  • Received : 2024.01.02
  • Accepted : 2024.02.08
  • Published : 2024.06.28

Abstract

Bacterial resistance to commonly used antibiotics is one of the major challenges to be solved today. Bacteriophage endolysins (Lysins) have become a hot research topic as a new class of antibacterial agents. They have promising applications in bacterial infection prevention and control in multiple fields, such as livestock and poultry farming, food safety, clinical medicine and pathogen detection. However, many phage endolysins display low bactericidal activities, short half-life and narrow lytic spectrums. Therefore, some methods have been used to improve the enzyme properties (bactericidal activity, lysis spectrum, stability and targeting the substrate, etc) of bacteriophage endolysins, including deletion or addition of domains, DNA mutagenesis, chimerization of domains, fusion to the membrane-penetrating peptides, fusion with domains targeting outer membrane transport systems, encapsulation, the usage of outer membrane permeabilizers. In this review, research progress on the strategies for improving their enzyme properties are systematically presented, with a view to provide references for the development of lysins with excellent performances.

Keywords

Acknowledgement

This work was supported by the Talents Recruitment Grant of Yangfan Plan of Guangdong Province (4YF16003G) and Dongguan Science and Technology of Social Development Program (20231800936342).

References

  1. Loessner MJ. 2005. Bacteriophage endolysins--current state of research and applications. Curr. Opin. Microbiol. 8: 480-487.
  2. Young I, Wang I, Roof WD. 2000. Phages will out: strategies of host cell lysis. Trends Microbiol. 8: 120-128.
  3. Nelson D, Loomis L, Fischetti VA. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 98: 4107-4112.
  4. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, et al. 2012. Endolysins as antimicrobials. Adv. Virus Res. 83: 299-365.
  5. Korndorfer IP, Danzer J, Schmelcher M, Zimmer M, Skerra A, Loessner MJ. 2006. The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of Listeria cell walls. J. Mol. Biol. 364: 678-689.
  6. Becker SC, Foster-Frey J, Donovan DM. 2008. The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol. Lett. 287: 185-191.
  7. Pritchard DG, Dong S, Kirk MC, Cartee RT, Baker JR. 2007. LambdaSa1 and LambdaSa2 prophage lysins of Streptococcus agalactiae. Appl. Environ. Microbiol. 73: 7150-7154.
  8. Oechslin F, Daraspe J, Giddey M, Moreillon P, Resch G. 2013. In vitro characterization of PlySK1249, a novel phage lysin, and assessment of its antibacterial activity in a mouse model of Streptococcus agalactiae bacteremia. Antimicrob. Agents Chemother. 57: 6276-6283.
  9. Shannon R, Radford DR, Balamurugan S. 2020. Impacts of food matrix on bacteriophage and endolysin antimicrobial efficacy and performance. Crit. Rev. Food Sci. Nutr. 60: 1631-1640.
  10. Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7: 1147-1171.
  11. Sykilinda NN, Nikolaeva AY, Shneider MM, Mishkin DV, Patutin AA, Popov VO, et al. 2018. Structure of an acinetobacter broad-range prophage endolysin reveals a C-terminal α-helix with the proposed role in activity against live bacterial cells. Viruses 10: 309.
  12. Raz A, Serrano A, Hernandez A, Euler CW, Fischetti VA. 2019. Isolation of phage lysins that effectively kill Pseudomonas aeruginosa in mouse models of lung and skin infection. Antimicrob. Agents Chemother. 63: e00024-19.
  13. Lai MJ, Lin NT, Hu A, Soo PC, Chen LK, Chen LH, et al. 2011. Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria. Appl. Microbiol. Biotechnol. 90: 529-539.
  14. Walmagh M, Briers Y, dos Santos SB, Azeredo J, Lavigne R. 2012. Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201φ2-1 and PVP-SE1. PLoS One 7: e36991.
  15. Briers Y, Schmelcher M, Loessner MJ, Hendrix J, Engelborghs Y, Volckaert G, et al. 2009. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144. Biochem. Biophys. Res. Commun. 383: 187-191.
  16. Gerstmans H, Grimon D, Gutierrez D, Lood C, Rodriguez A, van Noort V, et al. 2020. A VersaTile-driven platform for rapid hit-to-lead development of engineered lysins. Sci. Adv. 6: eaaz1136.
  17. Gutierrez D, Fernandez L, Rodriguez A, Garcia P. 2018. Are phage lytic proteins the secret weapon to kill Staphylococcus aureus? mBio 9: e01923-17.
  18. Garcia JL, Garcia E, Arraras A, Garcia P, Ronda C, Lopez R. 1987. Cloning, purification, and biochemical characterization of the pneumococcal bacteriophage Cp-1 lysin. J. Virol. 61: 2573-2580.
  19. Pritchard DG, Dong S, Baker JR, Engler JA. 2004. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology (Reading) 150: 2079-2087.
  20. Alrafaie AM, Stafford GP. 2023. Enterococcal bacteriophage: A survey of the tail associated lysin landscape. Virus Res. 327: 199073.
  21. Paradis-Bleau C, Cloutier I, Lemieux L, Sanschagrin F, Laroche J, Auger M, et al. 2007. Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase. FEMS Microbiol. Lett. 266: 201-209.
  22. Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM. 2009. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol. Lett. 294: 52-60.
  23. Loessner MJ, Wendlinger G, Scherer S. 1995. Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol. Microbiol. 16: 1231-1241.
  24. Navarre WW, Ton-That H, Faull KF, Schneewind O. 1999. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11. Identification of a D-alanyl-glycine endopeptidase activity. J. Biol. Chem. 274: 15847-15856.
  25. Pastagia M, Schuch R, Fischetti VA, Huang DB. 2013. Lysins: the arrival of pathogen-directed anti-infectives. J. Med. Microbiol. 62: 1506-1516.
  26. Fischetti VA. 2008. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 11: 393-400.
  27. Vollmer W, Blanot D, de Pedro MA. 2008. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32: 149-167.
  28. Fernandes S, Sao-Jose C. 2016. More than a hole: the holin lethal function may be required to fully sensitize bacteria to the lytic action of canonical endolysins. Mol. Microbiol. 102: 92-106.
  29. Ferro S, Amorico T, Deo P. 2018. Role of food sanitising treatments in inducing the 'viable but nonculturable' state of microorganisms. Food Control 91: 321-329.
  30. Maciejewska B, Olszak T, Drulis-Kawa Z. 2018. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl. Microbiol. Biotechnol. 102: 2563-2581.
  31. Schuch R, Nelson D, Fischetti VA. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418: 884-889.
  32. Domenech M, Garcia E, Moscoso M. 2011. In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob. Agents Chemother. 55: 4144-4148.
  33. Yang H, Linden SB, Wang J, Yu J, Nelson DC, Wei H. 2015. A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Sci. Rep. 5: 17257.
  34. Kim S, Lee DW, Jin JS, Kim J. 2020. Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. J. Glob. Antimicrob. Resist. 22: 32-39.
  35. Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, et al. 2018. A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front. Microbiol. 9: 3302.
  36. Cheng Q, Fischetti VA. 2007. Mutagenesis of a bacteriophage lytic enzyme PlyGBS significantly increases its antibacterial activity against group B streptococci. Appl. Microbiol. Biotechnol. 74: 1284-1291.
  37. Mayer MJ, Garefalaki V, Spoerl R, Narbad A, Meijers R. 2011. Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range. J. Bacteriol. 193: 5477-5486.
  38. Schmelcher M, Tchang VS, Loessner MJ. 2011. Domain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity. Microb. Biotechnol. 4: 651-662.
  39. Rodriguez-Rubio L, Martinez B, Rodriguez A, Donovan DM, Garcia P. 2012. Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion-associated peptidoglycan hydrolase: fusions, deletions, and synergy with LysH5. Appl. Environ. Microbiol. 78: 2241-2248.
  40. Diez-Martinez R, de Paz HD, Bustamante N, Garcia E, Menendez M, Garcia P. 2013. Improving the lethal effect of cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrob. Agents Chemother. 57: 5355-5365.
  41. Love MJ, Coombes D, Manners SH, Abeysekera GS, Billington C, Dobson RCJ. 2021. The molecular basis for Escherichia coli O157:H7 phage FAHEc1 endolysin function and protein engineering to increase thermal stability. Viruses 13: 1101.
  42. Mao J, Schmelcher M, Harty WJ, Foster-Frey J, Donovan DM. 2013. Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme. FEMS Microbiol Lett. 342: 30-36.
  43. Dong Q, Wang J, Yang H, Wei C, Yu J, Zhang Y, et al. 2015. Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci. Microb. Biotechnol. 8: 210-220.
  44. Fernandes S, Proenca D, Cantante C, Silva FA, Leandro C, Lourenco S, et al. 2012. Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus. Microb. Drug Resist. 18: 333-343.
  45. Harris F, Dennison SR, Phoenix DA. 2009. Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci. 10: 585-606.
  46. Mahlapuu M, Hakansson J, Ringstad L, Bjorn C. 2016. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell Infect. Microbiol. 6: 194.
  47. Bechinger B. 2015. The SMART model: Soft membranes adapt and respond, also transiently, in the presence of antimicrobial peptides. J. Pept. Sci. 21: 346-355.
  48. Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, et al. 2014. Engineered endolysin-based "Artilysins" to combat multidrug-resistant gram-negative pathogens. mBio 5: e01379-01314.
  49. Yan G, Yang R, Fan K, Dong H, Gao C, Wang S, et al. 2019. External lysis of Escherichia coli by a bacteriophage endolysin modified with hydrophobic amino acids. AMB Express. 9: 106.
  50. Mancos M, Sramkova Z, Peterkova D, Vidova B, Godany AJB. 2020. Functional expression and purification of tailor-made chimeric endolysin with the broad antibacterial spectrum. Biologia 75: 2031-2043.
  51. Cotter PD, Ross RP, Hill C. 2013. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 11: 95-105.
  52. Vincent PA, Morero RD. 2009. The structure and biological aspects of peptide antibiotic microcin J25. Curr. Med. Chem. 16: 538-549.
  53. Parks WM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A. 2007. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie 89: 500-507.
  54. Heselpoth RD, Euler CW, Schuch R, Fischetti VA. 2019. Lysocins: Bioengineered antimicrobials that deliver lysins across the outer membrane of Gram-negative bacteria. Antimicrob. Agents Chemother. 63: e00342-19.
  55. Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, et al. 2012. Structural engineering of a phage lysin that targets gram-negative pathogens. Proc. Natl. Acad. Sci. USA 109: 9857-9862.
  56. Yan G, Liu J, Ma Q, Zhu R, Guo Z, Gao C, et al. 2017. The N-terminal and central domain of colicin A enables phage lysin to lyse Escherichia coli extracellularly. Antonie Van Leeuwenhoek 110: 1627-1635.
  57. Zampara A, Sorensen MCH, Grimon D, Antenucci F, Vitt AR, Bortolaia V, et al. 2020. Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria. Sci. Rep. 10: 12087.
  58. Plancon L, Janmot C, le Maire M, Desmadril M, Bonhivers M, Letellier L, et al. 2002. Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5. J. Mol. Biol. 318: 557-569.
  59. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C. 2008. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res. 18: 309-327.
  60. Mozafari MR, Flanagan J, Matia-Merino L, Awati A, Singh H. 2010. Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J. Sci. Food Agric. 86: 2038-2045.
  61. Alhajlan M, Alhariri M, Omri A. 2013. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob. Agents Chemother. 57: 2694-2704.
  62. Solleti VS, Alhariri M, Halwani M, Omri A. 2015. Antimicrobial properties of liposomal azithromycin for Pseudomonas infections in cystic fibrosis patients. J. Antimicrob. Chemother. 70: 784-796.
  63. Rajendran V, Rohra S, Raza M, Hasan GM, Dutt S, Ghosh PC. 2015. Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob Agents Chemother. 60: 1304-1318.
  64. Bai J, Yang E, Chang PS, Ryu S. 2019. Preparation and characterization of endolysin-containing liposomes and evaluation of their antimicrobial activities against gram-negative bacteria. Enzyme Microb Technol. 128: 40-48.
  65. Kaur J, Kour A, Panda JJ, Harjai K, Chhibber S. 2020. Exploring endolysin-loaded alginate-chitosan nanoparticles as future remedy for staphylococcal infections. AAPS PharmSciTech. 21: 233.
  66. Abouhmad A, Dishisha T, Amin MA, Hatti-Kaul R. 2017. Immobilization to positively charged cellulose nanocrystals enhances the antibacterial activity and stability of hen egg white and T4 lysozyme. Biomacromolecules 18: 1600-1608.
  67. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. 2004. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control Release 100: 5-28.
  68. Ragelle H, Vandermeulen G, Preat V. 2013. Chitosan-based siRNA delivery systems. J. Control Release. 172: 207-218.
  69. Gondil VS, Dube T, Panda JJ, Yennamalli RM, Harjai K, Chhibber S. 2020. Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. Int. J. Pharm. 573: 118850.
  70. Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 56: 395-411.
  71. Briers Y, Walmagh M, Lavigne R. 2011. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J. Appl. Microbiol. 110: 778-785.
  72. Lim JA, Shin H, Heu S, Ryu S. 2014. Exogenous lytic activity of SPN9CC endolysin against gram-negative bacteria. J. Microbiol. Biotechnol. 24: 803-811.
  73. Walmagh M, Boczkowska B, Grymonprez B, Briers Y, Drulis-Kawa Z, Lavigne R. 2013. Characterization of five novel endolysins from Gram-negative infecting bacteriophages. Appl. Microbiol. Biotechnol. 97: 4369-4375.
  74. Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R, Neves-Petersen MT, et al. 2014. A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS One 9: e108376.
  75. Oliveira H, Vilas Boas D, Mesnage S, Kluskens LD, Lavigne R, Sillankorva S, et al. 2016. Structural and enzymatic characterization of ABgp46, a novel phage endolysin with broad anti-Gram-negative bacterial activity. Front. Microbiol. 7: 208.