DOI QR코드

DOI QR Code

유통 수산물에서 분리한 Vibrio parahaemolyticus의 항생제 내성 및 전장 유전체 분석을 통한 유전적 특성 분석

Whole-Genome Sequencing-based Antimicrobial Resistance and Genetic Profile Analysis of Vibrio parahaemolyticus Isolated from Seafood in Korea

  • 송경규 (인제대학교 BNIT융합대학 의생명공학과) ;
  • 조현우 (인제대학교 일반대학원 생명과학과) ;
  • 김연아 (인제대학교 일반대학원 디지털항노화헬스케어학과) ;
  • 장범순 (인제대학교 일반대학원 생명과학과) ;
  • 이미루 (인제대학교 일반대학원 생명과학과) ;
  • 박건택 (인제대학교 BNIT융합대학 의생명공학과)
  • Gyeong Gyu Song (Department of Biotechnology, Inje University) ;
  • Hyeonwoo Cho (Department of Biological Sciences, Inje University) ;
  • Yeona Kim (Digital Anti-aging and Healthcare, Inje University) ;
  • Beomsoon Jang (Department of Biological Sciences, Inje University) ;
  • Miru Lee (Department of Biological Sciences, Inje University) ;
  • Kun Taek Park (Department of Biotechnology, Inje University)
  • 투고 : 2024.05.12
  • 심사 : 2024.05.28
  • 발행 : 2024.06.30

초록

국내에서 V. parahaemolyticus로 인한 식중독 사고가 지속적으로 보고되고 있으며, 최근 국내 수산물 판매량 및 수산물 양식에 사용되는 항생제 판매량은 증가하는 추세이다. 따라서 본 연구는 국내에 유통되는 수산물에서 분리한 V. parahaemolyticus의 분포, 항생제 감수성, 유전적 특성 및 유전학적 통계를 조사하였다. 79건의 유통 수산물로부터 47건(59.5%)에서 V. parahaemolyticus가 분리되었다. 항생제 내성 양상의 경우, 총 47균주의 분리 균주에서는 ampicillin에 2균주(4.3%)가 내성을 보였으며, 이외 균주는 모든 항생제에 대해 감수성을 보였다. 항생제 내성 유전자의 경우, 모든 균주(100%)로부터 blaCAR family gene, tet(35), catC가 확인되었으며, 1균주(2.1%)에서는 fos가 확인되었다. 병원성 유전자 여부의 경우, 모든 분리 균주에서 tdh, trh 유전자는 확인되지 않았으나, T3SS1은 모든 균주(100%), T3SS2는 1균주(2.1%)에서 확인되었다. MLST의 경우, 17균주로부터 15가지의 ST가 확인되었으며, ST 658가 3균주, 이외 14가지 ST는 1균주씩 확인되었다. 확인된 ST는 대부분 중국, 태국 등의 환경 분리주로 확인되었으며, ST 396, ST 3042는 중국 임상 분리주로부터 확인되었다. 이로써, 최근 국내에 수산물과 관련한 식중독, 유통량, 항생제 판매량 등의 추세에 따른 위험성에 V. parahaemolyticus에 대한 지속적인 연구가 필요할 것으로 사료되며, 본 연구는 그에 대한 도움이 될 것이라 사료된다.

Vibrio parahaemolyticus is a major seafood-borne pathogen commonly detected in marine environments. In Korea, V. parahaemolyticus-induced foodborne illnesses account for 7.5% of bacterial pathogen-related food poisonings. Moreover, the amount of antimicrobial agents used in aquatic cultures is continuously increasing. In this study, we isolated V. parahaemolyticus from seafood samples and performed antimicrobial susceptibility tests using the microbroth dilution method. Furthermore, using whole-genome sequencing, we identified antimicrobial resistance genes, virulence genes, and sequence types (STs). We could isolate V. parahaemolyticus from 47 (59.5%) of the 79 seafood samples we purchased from retail markets in Seoul and Chungcheong provinces. Antimicrobial susceptibility tests revealed that 2 and all of the 47 isolates were ampicillin-resistant (4.3%) and susceptible to all tested antimicrobial agents (100%), respectively. The genotype analysis revealed that all isolates carried beta-lactam-, tetracycline-, and chloramphenicol-associated antimicrobial resistance genes. However, we could detect fosfomycin resistance only in one isolate. Concerning the virulence genes, we detected T3SS1 and T3SS2-associated genes in all and one isolate, respectively. However, we could not detect the tdh and trh genes. Of the 47 isolates, 17 belonged to 15 different STs, including ST 658 with 3 isolates. The rest 30 isolates were identified as 25 new STs. The results of this study support the need for operating a continuous monitoring system to prevent foodborne illnesses and the spread of antimicrobial resistance genes in V. parahaemolyticus.

키워드

과제정보

본 연구는 식품의약품안전처 연구용역개발사업(과제번호: 22192식품위021)의 지원으로 이루어졌으며, 이에 감사드립니다.

참고문헌

  1. Letchumanan, V., Chan, K.G., Lee, L.H., Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol., 5, 705 (2014).
  2. Drake, S.L., DePaola, A., Jaykus, L.A., An overview of Vibrio vulnificus and Vibrio parahaemolyticus. J. Compr. Rev. Food Sci., 6, 120-144 (2007). https://doi.org/10.1111/j.1541-4337.2007.00022.x
  3. Ministry of Food and Drug Safety (MFDS), (2022, October 14). Food poisoning statistics. Retrieved from http://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=4425&meun_grp=MENU_NEW02.
  4. Ministry of Food and Drug Safety (MFDS), 2023. Food and Rural Affairs investigated the antimicrobial resistance of bacteria recovered from food animals, their meat and fishery products, and companion animals in the Republic of Korea in 2022, Cheongju, Korea, pp. 8-17.
  5. Park, K., Mok, J.S., Kwon, J.Y., Ryu, A.R., Kim, S.H., Lee, H.J., Food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of Vibrio parahaemolyticus in Korea from 2003 to 2016: a review. Fish. Aquat. Sci., 21, 3 (2018).
  6. Reygaert, W.C., An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiol., 4, 482-501 (2018). https://doi.org/10.3934/microbiol.2018.3.482
  7. Jian, Z., Zeng, L., Xu, T., Sun, S., Yan, S., Yang, L., Huang, Y., Jia, J., Dou, T., Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J. basic microbiol., 61, 1049-1070 (2021). https://doi.org/10.1002/jobm.202100201
  8. Ghenem, L., Elhadi, N., Alzahrani, F., Nishibuchi, M., Vibrio Parahaemolyticus: A Review on Distribution, Pathogenesis, Virulence Determinants and Epidemiology. Saudi J. Med. Med. Sci., 5, 93-103 (2017). https://doi.org/10.4103/sjmms.sjmms_30_17
  9. Raghunath, P., Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Front. Microbiol., 5, 805 (2014).
  10. Miller, K.A., Tomberlin, K.F., Dziejman, M., Vibrio variations on a type three theme. Curr. Opin. Microbiol., 47, 66-73 (2019). https://doi.org/10.1016/j.mib.2018.12.001
  11. Dashti, A.A., Jadaon, M.M., Abdulsamad, A.M., Dashti, H.M., Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med. J., 41, 117-122 (2009).
  12. Ministry of Food and Drug Safety (MFDS), 2022. Detection method for foodborne pathogens investigation. Cheongju, Korea, pp. 67-72.
  13. Clinical and Laboratory Standard Institute (CLSI), 2018. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. Wayne, PA, USA, pp. 56-58.
  14. Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120 (2014). https://doi.org/10.1093/bioinformatics/btu170
  15. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., Pevzner, P. A., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol., 19, 455-477 (2012). https://doi.org/10.1089/cmb.2012.0021
  16. Modi, A., Vai, S., Caramelli, D., Lari, M., The Illumina sequencing protocol and the NovaSeq 6000 System. Methods Mol. Biol., 2242, 15-42 (2021). https://doi.org/10.1007/978-1-0716-1099-2_2
  17. Feldgarden, M., Brover, V., Gonzalez-Escalona, N., Frye, J. G., Haendiges, J., Haft, D. H., Hoffmann, M., Pettengill, J. B., Prasad, A. B., Tillman, G. E., Tyson, G. H., Klimke, W., AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep., 11, 12728 (2021).
  18. Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., Jin, Q., VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res., 33, D325-328 (2005).
  19. Jolley, K.A., Bray, J.E., Maiden, M. C.J., Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res., 3, 124 (2018).
  20. Park, K., Mok, J.S., Kwon, J.Y., Ryu, A.R., Shim, K.B., Seasonal and spatial variation of pathogenic Vibrio species isolated from seawater and shellfish off the Gyeongnam coast of Korea in 2013-2016. Korean Journal of Fisheries and Aquatic Sciences. 52, 27-34 (2019).
  21. Jeong, H.J., Lee, M.G., Lee, H.H., Seo, S.E., Jeong, S.H., Cho, B.S., Seo, J.M., Distribution of toxin genes and antimicrobial resistance of Vibrio parahaemolyticus isolated from seafood in Gwangju. J. Food Hyg. Saf., 37, 63-68 (2022). https://doi.org/10.13103/JFHS.2022.37.2.63
  22. Hu, Y., Li, F., Zheng, Y., Jiao, X., Guo, L., Isolation, molecular characterization and antibiotic susceptibility pattern of Vibrio parahaemolyticus from aquatic products in the Southern Fujian coast, China. J. microbiol. biotechnol., 30, 856-867 (2020). https://doi.org/10.4014/jmb.2001.01005
  23. Tran, T.H.T., Yanagawa, H., Nguyen, K.T., Hara-Kudo, Y., Taniguchi, T., Hayashidani, H., Prevalence of Vibrio parahaemolyticus in seafood and water environment in the Mekong Delta, Vietnam. J. Vet. Med. Sci., 80, 1737-1742 (2018). https://doi.org/10.1292/jvms.18-0241
  24. Ryu, A., Park, K., Kim, S.H., Ham, I.T., Kwon, J.Y., Kim, J.H., Yu, H.S., Lee, H.J., Mok, J.S., Antimicrobial resistance patterns of Escherichia coli and Vibrio parahaemolyticus isolated from shellfish from the West coast of Korea. Korean J. Fish. Aquat. Sci., 50, 662-668 (2017).
  25. Yu, H., Oh, E.G., Shin, S.B., Park, Y.S., Lee, H.J., Kim, J.H., Song, K.C., Distribution and antimicrobial resistance of Vibrio parahaemolyticus isolated from Korean shellfish. Korean J. Fish. Aquat. Sci., 47, 508-515 (2014)
  26. Kim,S.H., Sin, Y.M., Lee, M.J. Shin, P.K., Kim, M.G., Cho, J.S., Lee, C.H., Lee, Y.J., Chae, K.R., Isolation of major foodborne pathogenic bacteria from ready-to-eat seafoods and its reduction strategy. J. Life Sci., 15, 941-947 (2005). https://doi.org/10.5352/JLS.2005.15.6.941
  27. Mok, J.S., Cho, S.R., Park, Y.J., Jo, M.R., Ha, K.S., Kim, P.H., Kim, M.J., Distribution and antimicrobial resistance of Vibrio parahaemolyticus isolated from fish and shrimp aquaculture farms along the Korean coast. Mar. Pollut. Bull., 171, 112785 (2021).
  28. Huang, Y., Lyu, B., Zhang, X., Tian, Y., Lin, C., Shen, L., Yan, H., Zhang, D., Jia, L., Qu, M., Wang, Q., Vibrio parahaemolyticus O10:K4: an emergent serotype with pandemic virulence traits as predominant clone detected by whole genome sequence analysis - Beijing Municipality. China, 2021. China CDC Wkly., 4, 471-477 (2022).
  29. Stasiak, M., Mackiw, E., Kowalska, J., Kucharek, K., Postupolski, J., Silent genes: antimicrobial resistance and antibiotic production. Pol. J. Microbiol., 70, 421-429 (2021). https://doi.org/10.33073/pjm-2021-040
  30. Zhang, F., Zhang, J., Lin, G., Chen, X., Huang, H., Xu, C., Chi, H., Antibiotic resistance and genetic profiles of Vibrio parahaemolyticus isolated from farmed pacific white shrimp (Litopenaeus vannamei) in Ningde regions. Microorganisms, 12 (2024).
  31. Changsen, C., Likhitrattanapisal, S., Lunha, K., Chumpol, W., Jiemsup, S., Prachumwat, A., Kongkasuriyachai, D., Ingsriswang, S., Chaturongakul, S., Lamalee, A., Yongkiettrakul, S., Buates, S., Incidence, genetic diversity, and antimicrobial resistance profiles of Vibrio parahaemolyticus in seafood in Bangkok and eastern Thailand. PeerJ, 11, e15283 (2023).
  32. Jeong, H.W., Kim, J.A., Jeon, S.J., Choi, S.S., Kim, M.K., Yi, H.J., Cho, S.J., Kim, I.Y., Chon, J.W., Kim, D.H., Bae, D., Kim, H., Seo, K.H., Prevalence, antibiotic-resistance, and virulence characteristics Vibrio parahaemolyticus in restaurant fish tanks in Seoul, South Korea. Foodborne pathog. dis., 17, 209-214 (2020). https://doi.org/10.1089/fpd.2019.2691