DOI QR코드

DOI QR Code

Membrane Based Recovery of Valuable Lithium Metals from Lithium Ion Battery Waste

리튬이온전지 폐기물로부터 가치 있는 리튬금속을 멤브레인 기반으로 회수

  • Togzhan Tangbay (Nano Science and Engineering, Underwood International College, Yonsei University) ;
  • Rajkumar Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 토잔 탕베이 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2024.05.13
  • Accepted : 2024.06.08
  • Published : 2024.06.30

Abstract

Growing demand on clean energy to control environmental pollution is growing rapidly. Rechargeable battery such as lithium ion battery is excellent source of clean energy but there is rapid depletion of lithium metal due to high demand and supply mismatch. Recovery of the precious metal from the battery waste is one of the possible solution along with the environmental pollution control. Membrane based separation method is highly successful commercial process available to recover lithium from the waste. This work will cover various methods reported recently and will be compiled in the form of a review.

환경오염을 제어하기 위한 청정에너지에 대한 수요 증가는 빠르게 증가하고 있습니다. 리튬 이온 배터리와 같은 충전식 배터리는 청정에너지의 우수한 원천이지만 높은 수요와 공급 불일치로 인해 리튬 금속이 빠르게 고갈되고 있습니다. 배터리 폐기물에서 귀금속을 회수하는 것은 환경오염 제어와 함께 가능한 해결책 중 하나입니다. 멤브레인 기반 분리 방법은 폐기물에서 리튬을 회수할 수 있는 매우 성공적인 상업적 공정입니다. 이 작업은 최근에 보고된 다양한 방법을 다룰 것이며 검토 형식으로 작성될 것입니다.

Keywords

References

  1. S. Assel and R. Patel, "Alkali recovery by electro-dialysis process: A review", Membr. J., 33, 87 (2023).
  2. S. H. Oh and R. Patel, "Progress in composite polymer membrane for application as separator in lithium ion battery", Membr. J., 30, 228 (2020).
  3. Y. Zha, Q. Meng, P. Dong, and Y. Zhang, "The latest research on the pre-treatment and recovery methods of spent lithium-ion battery cathode material", Ionics, 30, 623 (2024).
  4. H. Joo, S. Y. Jung, S. Kim, K. H. Ahn, W. S. Ryoo, and J. Yoon, "Application of a flow-type electrochemical lithium recovery system with λ-MnO2/LiMn2O4: Experiment and simulation", ACS Sustainable Chem. Eng., 8, 9622 (2020).
  5. H. Joo, S. Kim, S. Kim, M. Choi, S. H. Kim, and J. Yoon, "Pilot-scale demonstration of an electrochemical system for lithium recovery from the desalination concentrate", Environ. Sci. Water Res. Technol., 6, 290 (2020).
  6. S. Kim, J. S. Kang, H. Joo, Y. E. Sung, and J. Yoon, "Understanding the behaviors of λ-MnO2in electrochemical lithium recovery: Key limiting factors and a route to the enhanced performance", Environ. Sci. Technol., 54, 9044 (2020).
  7. N. Xie, Y. Li, Y. Lu, J. Gong, and X. Hu, "Electrochemically controlled reversible lithium capture and release enabled by LiMn2O4 nanorods", ChemElectroChem, 7, 105 (2020).
  8. A. Zhao, J. Liu, X. Ai, H. Yang, and Y. Cao, "Highly selective and pollution-free electrochemical extraction of lithium by a polyaniline/Li x Mn2O4 cell", ChemSusChem, 12, 1361 (2019).
  9. J. Niu, W. Yan, X. Song, W. Ji, Z. Wang, X. Hao, and G. Guan, "An electrically switched ion exchange system with self-electrical-energy recuperation for efficient and selective LiCl separation from brine lakes", Sep. Purif. Technol., 274, 118995 (2021).
  10. J. Niu, W. Zhang, S. Li, W. Yan, X. Hao, Z. Wang, F. Wang, G. Zhang, and G. Guan, "An electroactive montmorillonite/polyaniline nanocomposite film: Superfast ion transport and ultra-affinity ion recognition for rapid and selective separation of Pb2+ ions", Chem. Eng. J., 413, 127750 (2021).
  11. A. Siekierka and M. Bryjak, "Modified poly(vinylidene fluoride) by diethylenetriamine as a supported anion exchange membrane for lithium salt concentration by hybrid capacitive deionization", Membranes, 12, 103 (2022).
  12. A. Siekierka, "Lithium and magnesium separation from brines by hybrid capacitive deionization", Desalination, 527, 115579 (2022).
  13. X. Zhao, H. Yang, Y. Wang, L. Yang, and L. Zhu, "Lithium extraction from brine by an asymmetric hybrid capacitor composed of heterostructured lithium-rich cathode and nano-bismuth anode", Sep. Purif. Technol., 274, 119078 (2021).
  14. A. Ruiz-Aguirre, J. Lopez, R. Gueccia, S. Randazzo, A. Cipollina, J. L. Cortina, and G. Micale, "Diffusion dialysis for the treatment of H2SO4-CuSO4 solutions from electroplating plants: Ions membrane transport characterization and modelling", Sep. Purif. Technol., 266, 118215 (2021).
  15. J.-M. A. Juve, F. M. S. Christensen, Y. Wang, and Z. Wei, "Electrodialysis for metal removal and recovery: A review", Chem. Eng. J., 435, 134857 (2022).
  16. X. Zeng, L. Xu, T. Deng, Y. Wang, W. Xu, and W. Zhang, "Anionic MOFs embedded in anion-exchange membranes for the separation of lithium/magnesium cations", ACS Sustainable Chem., Eng., 11, 12877-12887 (2023).
  17. Z. Yang, W. Fang, Z. Wang, R. Zhang, Y. Zhu, and J. Jin, "Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation", J. Membr. Sci., 620, 118862 (2021).
  18. B. Han, S. M. Chevrier, Q. Yan, and J. C. P. Gabriel, "Tailorable metal-organic framework based thin film nanocomposite membrane for lithium recovery from wasted batteries", Sep. Purif. Technol., 334, 125943 (2024).
  19. S. K. Kang, J. W. Park, E. Tsegay Tikue, H. Zhang, S. Yang, and P. S. Lee, "Self-cross-linking nanocomposite membranes for green recycling of the solvent during lithium-ion battery manufacturing", ACS Sustainable Chem. Eng., 10, 899 (2022).
  20. G. Qu, J. Yang, Y. Ran, B. Li, H. Wang, and Y. Wei, "Adsorption performance and mechanism of TiO2/PVDF-based lithium-ion imprinted membrane in leaching solution of spent lithium-ion batteries", J. Clean. Prod., 442, 140982 (2024).
  21. S. Santoro, M. Aquino, C. Rizza, J. Occhiuzzi, D. Mastrippolito, G. D'Olimpio, A. H. Avci, J. De Santis, V. Paolucci, L. Ottaviano, L. Lozzi, A. Ronen, M. Bar-Sadan, D. S. Han, A. Politano, and E. Curcio, "Lithium recovery through WS2 nanofillers-promoted solar photothermal membrane crystallization of LiCl", Desalination, 546, 116186 (2023).
  22. S. Kim, J. Lee, S. Kim, S. Kim, and J. Yoon, "Electrochemical lithium recovery with a LiMn2O4-zinc battery system using zinc as a negative electrode", Energy Technol., 6, 340 (2018).
  23. Q. Liu, K. Lin, C. Tang, X. Zeng, D. Huang, and X. Hou, "The closed-loop recycling strategy of Li and Co metal ions based on aqueous Zn-air desalination battery", J. Colloid Interface Sci., 642, 182 (2023).
  24. S. Wu, H. Zhu, Y. Wu, S. Li, G. Zhang, and Z. Miao, "Resourceful treatment of battery recycling wastewater containing H2SO4 and NiSO4 by diffusion dialysis and electrodialysis", Membranes, 13, 570 (2023).
  25. F. Xie, F. Lu, C. Liu, Y. Tian, Y. Gao, L. Zheng, and X. Gao, "Poly(ionic liquid) membranes preserving liquid crystalline microstructures for lithium-ion enrichment", Colloids Surf. A Physicochem. Eng. Asp., 658, 130731 (2023).
  26. R. Kumar, C. Liu, G. S. Ha, Y. K. Park, M. Ali Khan, M. Jang, S. H. Kim, M. A. Amin, A. Gacem, and B. H. Jeon, "Downstream recovery of Li and value-added metals (Ni, Co, and Mn) from leach liquor of spent lithium-ion batteries using a membrane-integrated hybrid system", Chem. Eng. J., 447, 137507 (2022).
  27. N. P. Wamble, E. A. Eugene, W. A. Phillip, and A. W. Dowling, "Optimal diafiltration membrane cascades enable green recycling of spent lithium-ion batteries", ACS Sustainable Chem. Eng., 10, 12207 (2022).