DOI QR코드

DOI QR Code

Diet analysis of Clithon retropictum in south coast of Korea using metabarcoding

  • 투고 : 2023.11.10
  • 심사 : 2023.12.21
  • 발행 : 2024.06.30

초록

Background: This study focused on the diet of Clithon retropictum, level II endangered species in Korea. Since the development of brackish water zones has led to a decline in the population of this species, to obtain information on the ecology of C. retropictum required for its conservation and restoration. To investigate the actual preys of C. retropictum in south coast of Korea, we conducted high-throughput sequencing and metabarcoding techniques to extract DNA from gut contents and periphyton in their habitats. Results: Total 118 taxonomic groups were detected from periphyton samples. 116 were Chromista and Cyanobacteria dominated in the most samples. In gut contents samples, 98 taxonomic groups were detected. Similar to the results of periphyton, 96 were Chromista and Cyanobacteria dominated in the most samples. In the principal component analysis based on the presence/absence of taxonomic groups, gut content composition showed more clustered patterns corresponding to their habitats. Bryophyta was the most crucial taxonomic group explaining the difference between periphyton and gut contents compositions of C. retropictum. Conclusions: Our finding suggests that C. retropictum may not randomly consume epilithic algae but instead, likely to supplement their diet with Bryophyta.

키워드

과제정보

We would like to thank Dr. Inae Yeo in National Institute of Ecology for handling administrative proceedings.

참고문헌

  1. Antonio ES, Kasai A, Ueno M, Kurikawa Y, Tsuchiya K, Toyohara H, et al. Consumption of terrestrial organic matter by estuarine molluscs determined by analysis of their stable isotopes and cellulase activity. Estuar Coast Shelf Sci. 2010a;86(3):401-7. https://doi.org/10.1016/j.ecss.2009.05.010.
  2. Antonio ES, Kasai A, Ueno M, Won N, Ishihi Y, Yokoyama H, et al. Spatial variation in organic matter utilization by benthic communities from Yura River-Estuary to offshore of Tango Sea, Japan. Estuar Coast Shelf Sci. 2010b;86(1):107-17. https://doi.org/10.1016/j.ecss.2009.10.020.
  3. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome. 2018;6(1):90. https://doi.org/10.1186/s40168-018-0470-z.
  4. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852-7. https://doi.org/10.1038/s41587-019-0209-9.
  5. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-3. https://doi.org/10.1038/nmeth.3869.
  6. Celikkol-Aydin S, Gaylarde CC, Lee T, Melchers RE, Witt DL, Beech IB. 16S rRNA gene profiling of planktonic and biofilm microbial populations in the Gulf of Guinea using Illumina NGS. Mar Environ Res. 2016;122:105-12. https://doi.org/10.1016/j.marenvres.2016.10.001.
  7. Cognetti G, Maltagliati F. Biodiversity and adaptive mechanisms in brackish water fauna. Mar Pollut Bull. 2000;40(1):7-14. https://doi.org/10.1016/S0025-326X(99)00173-3.
  8. den Hartog C. Brackish water as an environment for algae. Blumea. 1967;15(1):31-43.
  9. Djemiel C, Plassard D, Terrat S, Crouzet O, Sauze J, Mondy S, et al. µgreen-db: a reference database for the 23S rRNA gene of eukaryotic plastids and cyanobacteria. Sci Rep. 2020;10(1):5915. https://doi.org/10.1038/s41598-020-62555-1.
  10. Han SP, Hwang IC, Kwon SJ. Studies on distribution and ecology of Clithon retropictus (Martens, 1879) in South Korea. J Wetl Res. 2021;23(4):317-26. https://doi.org/10.17663/JWR.2021.23.4.317.
  11. Hebert PD, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270(1512):313-21. https://doi.org/10.1098/rspb.2002.2218.
  12. Kim JW, Ryu SW, Lee JK, Park JW, Lee YK, Shim JW, et al. Stream ecology and the Nakdong river. Daegu: Keimyung University Press; 2009.
  13. Kang HE, Yoon TH, Yoon S, Kim HJ, Park H, Kang CK, et al. Genomic analysis of red-tide water bloomed with Heterosigma akashiwo in Geoje. PeerJ. 2018;6:e4854. https://doi.org/10.7717/peerj.4854.
  14. Kezlya E, Tseplik N, Kulikovskiy M. Genetic markers for metabarcoding of freshwater microalgae: review. Biology (Basel). 2023;12(7):1038. https://doi.org/10.3390/biology12071038.
  15. Kim K, Joo GJ, Jeong KS, Gim JS, Lee Y, Hong D, et al. Molecular diet analysis of Asian clams for supplementary biodiversity monitoring: a case study of Nakdong river estuary. Biology (Basel). 2023;12(9):1245. https://doi.org/10.3390/biology12091245.
  16. Kowalska Z, Pniewski F, Latala A. DNA barcoding - a new device in phycologist's toolbox. Ecohydrol Hydrobiol. 2019;19(3):417-27. https://doi.org/10.1016/j.ecohyd.2019.01.002.
  17. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10-2. https://doi.org/10.14806/ej.17.1.200.
  18. Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci. 2015;2(7):150088. https://doi.org/10.1098/rsos.150088.
  19. Park WB, Lim SH, Won DH, Lee KL, Hong C, Do Y. Occupancy probability estimation of endangered species Clithon retropictus. Korean J Ecol Environ. 2022;55(1):76-83. https://doi.org/10.11614/KSL.2022.55.1.076.
  20. Sherwood AR, Presting GG. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. J Phycol. 2007;43(3):605-8. https://doi.org/10.1111/j.1529-8817.2007.00341.x.
  21. Sherwood AR, Chan YL, Presting GG. Application of universally amplifying plastid primers to environmental sampling of a stream periphyton community. Mol Ecol Resour. 2008;8(5):1011-4. https://doi.org/10.1111/j.1755-0998.2008.02138.x.