DOI QR코드

DOI QR Code

The effect of thinning on trade-offs in ecosystem services: the case study of a Korean pine plantation on Mt. Gari

  • Kiwoong Lee (Forest Ecology Division, National Institute of Forest Science) ;
  • Soon Jin Yun (Forest Ecology Division, National Institute of Forest Science) ;
  • Minsoo Kim (Forest Ecology Division, National Institute of Forest Science) ;
  • Hee Moon Yang (Forest Ecology Division, National Institute of Forest Science) ;
  • A Reum Kim (Forest Ecology Division, National Institute of Forest Science)
  • 투고 : 2023.11.01
  • 심사 : 2024.02.26
  • 발행 : 2024.06.30

초록

Background: The study was carried out to analyze the temporal changes of trade-offs (TOs) between two ecosystem services (ESs) before and after thinning in a Pinus koraiensis plantation on Mt. Gari from 2006 to 2021. As target variables, aboveground carbon (AGC) storage and species richness (SR) were chosen for regulating and supporting services. Thinning was applied from 2007 through 2008 with three treatments: 1) light thinning (LT), 2) heavy thinning (HT), and 3) control (Con). Results: Thinning influenced both AGC and SR. In 2021, AGC in the Con (111.1 t C ha-1) was significantly higher compared to the LT (82.0 t C ha-1) and HT (60.4 t C ha-1) after thinning from 2007 to 2008. Also, SR was marginally higher in the LT (94 species) than in the Con (55 species) and HT (87 species) in 2011. Relative benefits of AGC and SR showed similar trends with the obtained values. In addition, the effects of thinning on TO varied among treatments and over time, demonstrating different degrees of TO between the two ESs. In the LT, TO was 0.13 in 2006 and slightly increased to 0.2 by 2021. TO in the HT exhibited a relatively rapid increase from 0.22 in 2006 to 0.58 by 2021, while To in the Con fluctuated, rising to 0.36 in 2011 from 0.1 in 2006 and decreasing to 0.25 by 2021. Among the three treatments, the degree of TOs between the two ESs was the lowest in the LT. Conclusions: Depending on thinning intensities, the responses of ESs and the degree of TOs vary. Regarding the balance between enhancements and TOs in ESs among treatments, the LT treatment showing intermediate carbon storage, higher SR, and lower TOs will be a proper silvicultural application.

키워드

과제정보

The authors are deeply grateful to the National Institute of Forest Science for funding during the research period.

참고문헌

  1. Ahn SE, Rho P. Development and application of index framework to assess cost-effectiveness of payments for forest ecosystem services in Korea. J Korean For Soc. 2016;105(3):377-90. https://doi.org/10.14578/jkfs.2016.105.3.377.
  2. Ares A, Berryman SD, Puettmann KJ. Understory vegetation response to thinning disturbance of varying complexity in coniferous stands. Appl Veg Sci. 2009;12(4):472-87. https://doi.org/10.1111/j.1654-109X.2009.01042.x.
  3. Bennett EM, Peterson GD, Gordon LJ. Understanding relationships among multiple ecosystem services. Ecol Lett. 2009;12(12):1394-404. https://doi.org/10.1111/j.1461-0248.2009.01387.x.
  4. Bradford JB, D'Amato AW. Recognizing trade-offs in multi-objective land management. Front Ecol Environ. 2012;10(4):210-6. https://doi.org/10.1890/110031.
  5. Braun-Blanquet J. Pflanzensoziologie: grundzuge der vegetationskunde. 3rd ed. Vienna: Springer; 1964. German.
  6. Burton JI, Ares A, Olson DH, Puettmann KJ. Management trade-off between aboveground carbon storage and understory plant species richness in temperate forests. Ecol Appl. 2013;23(6):1297-310. https://doi.org/10.1890/12-1472.1.
  7. Carpenter SR, Mooney HA, Agard J, Capistrano D, Defries RS, Diaz S, et al. Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proc Natl Acad Sci U S A. 2009;106(5): 1305-12. https://doi.org/10.1073/pnas.0808772106.
  8. Chan KM, Shaw MR, Cameron DR, Underwood EC, Daily GC. Conservation planning for ecosystem services. PLoS Biol. 2006;4(11):e379. https://doi.org/10.1371/journal.pbio.0040379.
  9. Cho W, Lim W, Choi WI, Yang HM, Ko DW. Modeling the effects of forest management scenarios on aboveground biomass and wood production: a study in Mt. Gariwang, South Korea. J Korean Soc For Sci. 2023;112(2):173-87. https://doi.org/10.14578/jkfs.2023.112.2.173.
  10. Choi AS, Oh CO. Economic valuation of the ecosystem services in Seocheon intertidal mudflats. Environ Resour Econ Rev. 2018;27(2):233-60. https://doi.org/10.15266/KEREA.2018.27.2.233.
  11. Day M, Baldauf C, Rutishauser E, Sunderland TCH. Relationships between tree species diversity and above-ground biomass in Central African rainforests: implications for REDD. Environ Conserv. 2014;41(1):64-72. https://doi.org/10.1017/S0376892913000295.
  12. Deng X, Li Z, Gibson J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J Geogr Sci. 2016;26(7):953-68. https://doi.org/10.1007/s11442-016-1309-9.
  13. Egoh B, Reyers B, Rouget M, Richardson DM, Le Maitre DC, van Jaarsveld AS. Mapping ecosystem services for planning and management. Agric Ecosyst Environ. 2008;127(1-2):135-40. https://doi.org/10.1016/j.agee.2008.03.013.
  14. Fahey RT, Puettmann KJ. Ground-layer disturbance and initial conditions influence gap partitioning of understorey vegetation. J Ecol. 2007; 95(5):1098-109. https://doi.org/10.1111/j.1365-2745.2007.01283.x.
  15. Kang S, Tenhunen J. Complex terrain and ecological heterogeneity (TERRECO): evaluating ecosystem services in production versus water quantity/quality in mountainous landscapes. Korean J Agric For Meteorol. 2010;12(4):307-16. https://doi.org/10.5532/KJAFM.2010.12.4.307.
  16. Kim M, Kraxner F, Forsell N, Song C, Lee WK. Enhancing the provisioning of ecosystem services in South Korea under climate change: the benefits and pitfalls of current forest management strategies. Reg Environ Chang. 2021;21(1):6. https://doi.org/10.1007/s10113-020-01728-0.
  17. Kim MS, Kim JS, Kim HS, Park CW, Bae KH. Changes in community structure of understory vegetation by silvicultural treatments in a Larix kaempferi plantation forest. J Agric Life Sci. 2020;54(2):25-35. https://doi.org/10.14397/jals.2020.54.2.25.
  18. Korea Meteorological Administration. 2023. https://data.kma.go.kr/stcs/grnd/grndRnList.do?pgmNo=69. Accessed 27 Jun 2023.
  19. Korea National Arboretum. Korean plant names index. 2003. http://www.nature.go.kr/kbi/plant/pilbk/selectPlantPilbkGnrlList.do. Accessed 22 Jul 2021.
  20. Lafond V, Cordonnier T, Mao Z, Courbaud B. Trade-offs and synergies between ecosystem services in uneven-aged mountain forests: evidences using Pareto fronts. Eur J For Res. 2017;136(5-6):997-1012 (2017). https://doi.org/10.1007/s10342-016-1022-3.
  21. Lee ST, Son YM, Lee KJ, Hwang J, Choi JC, Shin HC, et al. Aboveground carbon storage of Quercus acuta stands by thinning intensity. Korean J Agric For Meteorol. 2005;7(4):282-8.
  22. Li X, Li Y, Zhang J, Peng S, Chen Y, Cao Y. The effects of forest thinning on understory diversity in China: a meta-analysis. Land Degrad Dev. 2020;31(10):1225-40. https://doi.org/10.1002/ldr.3540.
  23. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, et al. Sustainability. Systems integration for global sustainability. Science. 2015; 347(6225):1258832. https://doi.org/10.1126/science.1258832.
  24. Liu L, Wang Z, Wang Y, Zhang Y, Shen J, Qin D, et al. Trade-off analyses of multiple mountain ecosystem services along elevation, vegetation cover and precipitation gradients: a case study in the Taihang Mountains. Ecol Indic. 2019;103:94-104. https://doi.org/10.1016/j.ecolind.2019.03.034.
  25. Lu N, Fu B, Jin T, Chang R. Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes. Landsc Ecol. 2014;29(10):1697-708. https://doi.org/10.1007/s10980-014-0101-4.
  26. Mandal RA, Dutta IC, Jha PK, Karmacharya S. Relationship between carbon stock and plant biodiversity in collaborative forests in Terai, Nepal. Int Sch Res Not. 2013;2013:625767. https://doi.org/10.1155/2013/625767.
  27. Maron M, Cockfield G. Managing trade-offs in landscape restoration and revegetation projects. Ecol Appl. 2008;18(8):2041-9. https://doi.org/10.1890/07-1328.1.
  28. Millennium Ecosystem Assessment. Ecosystems and human well-being: synthesis. Washington, D.C.: Island Press; 2005.
  29. Nilsson M, Wardle DA. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ. 2005;3(8):421-8. https://doi.org/10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2.
  30. Peterson GD, Beard TD Jr, Beisner BE, Bennett EM, Carpenter SR, Cumming GS, et al. Assessing future ecosystem services: a case study of the Northern Highlands Lake District, Wisconsin. Conserv Ecol 2003;7(3):1.
  31. Rana E, Thwaites R, Luck G. Trade-offs and synergies between carbon, forest diversity and forest products in Nepal community forests. Environ Conserv. 2017;44(1):5-13. https://doi.org/10.1017/S0376892916000448.
  32. Rodriguez JP, Beard TD Jr, Bennett EM, Cumming GS, Cork S, Agard J, et al. Trade-offs across space, time, and ecosystem services. Ecology and Society. 2006;11(1):28.
  33. Son YM, Kim RH, Lee KH, Pyo JK, Kim SW, Hwang SJ, et al. Carbon emission factors and biomass allometric equations by species in Korea. Report 14-08. Seoul: Korea Forest Research Institute; 2014. pp.93.
  34. Xu X, Wang X, Hu Y, Wang P, Saeed S, Sun Y. Short-term effects of thinning on the development and communities of understory vegetation of Chinese fir plantations in Southeastern China. PeerJ. 2020;8:e8536. https://doi.org/10.7717/peerj.8536.
  35. Zhou X, Wen Y, Goodale UM, Zuo H, Zhu H, Li X, et al. Optimal rotation length for carbon sequestration in Eucalyptus plantations in subtropical China. New For. 2017;48(5):609-27. https://doi.org/10.1007/s11056-017-9588-2.
  36. Zhou X, Zhu H, Wen Y, Goodale UM, Li X, You Y, et al. Effects of understory management on trade-offs and synergies between biomass carbon stock, plant diversity and timber production in eucalyptus plantations. For Ecol Manag. 2018;410:164-73. https://doi.org/10.1016/j.foreco.2017.11.015.
  37. Zhu J, Dai E, Zheng D, Wang X. Characteristic of tradeoffs between timber production and carbon storage for plantation under harvesting impact: a case study of Huitong National Research Station of Forest Ecosystem. J Geogr Sci. 2018;28(8):1085-98. https://doi.org/10.1007/s11442-018-1543-4.