DOI QR코드

DOI QR Code

Mathematics & coding mobile contents for secondary education

텍스트 코딩을 활용한 중등수학 모바일 콘텐츠 개발 연구

  • Lee, Sang-Gu (Department of Mathematics, Sungkyunkwan University) ;
  • Lee, Jae Hwa (Division of Data Science, Hallym University) ;
  • Nam, Yun (Institute of Basic Science, Sungkyunkwan University)
  • 이상구 (성균관대학교) ;
  • 이재화 (한림대학교) ;
  • 남윤 (성균관대학교)
  • Received : 2024.05.03
  • Accepted : 2024.06.19
  • Published : 2024.06.30

Abstract

In this paper, we present the development and a case study on 'Mathematics & Coding Mobile Contents' tailored for secondary education. These innovative resources aim to alleviate the burden of laborious calculations, enabling students to allocate more time to engage in discussions and visualize complex mathematical concepts. By integrating these contents into the curriculum, students can effectively meet the national standards for achievement in mathematics. They are empowered to develop their mathematical thinking skills through active engagement with the material. When properly integrated into secondary mathematics education, these resources not only facilitate attainment of national curriculum standards but also foster students' confidence in their mathematical abilities. Furthermore, they serve as valuable tools for nurturing both computational and mathematical thinking among students.

본 논문에서는 텍스트 코딩을 활용하여 최근 개발한 중등수학 모바일(Mobile) 콘텐츠에 관하여 소개한다. 해당 콘텐츠는 복잡한 계산에 대한 부담을 덜어주고 함수의 그래프를 쉽게 그리는 등의 실습이 가능하도록 설계되어, 학생들이 단순 문제 풀이 시간을 절약하는 대신 확보한 시간을 활용해 수학 문제의 본질을 이해하고 응용하는 능력을 기름으로써 자신감을 향상시키고자 하는 의도로 기획되었다. 또한 코드를 통해 문제를 해결하는 과정과 절차를 보다 잘 인지할 수 있도록 함으로써, 컴퓨팅 사고력(Computatonal Thinking)과 알고리즘적 사고 향상에 도움을 주고자 하였다. 두 차례 각기 다른 수준과 다른 배경을 가진 학생들을 대상으로 본 콘텐츠를 시범 적용한 사례(대학생 대상 대학 미분적분학 학습 전 복습, 고등학생 대상 수학 과목 예습)에서 얻은 데이터와 프로젝트 결과물을 바탕으로 본 콘텐츠가 중·고등학교 수학을 효율적으로 예습·복습한다거나, 지필로 불가능한 복잡한 계산 및 시뮬레이션을 통한 결과 예측 등의 활동을 수행하는 데 활용될 수 있음을 확인하였다.

Keywords

References

  1. Kang, H.R., Lim, C.L. & Cho, H.H. (2021). A study on coding mathematics curriculum and teaching methods that converges school mathematics and school informatics. The Mathematical Education, 60(4), 467-491. 
  2. Kang, H. & Choi, E. (2023). A study on pre-service teachers' development of digital-based teaching and learning materials of Pi. Education of Primary School Mathematics, 26(1), 65-82. 
  3. Ministry of Education (2015). The 2015 revised curriculum. 
  4. Ministry of Education (2022). The 2022 revised curriculum. 
  5. Kim, Y.M., Ko, H.K. & Huh, N. (2020). A study on development of integrating mathematics and coding teaching & learning materials using python for prime factorization in 7th grade. Communications of Mathematical Education, 34(4), 563-585. 
  6. Kim, J.H. (2015). Curriculum design of 'problem-solving methods and procedures' section in the informatics subject for enhancing computational thinking: Based on python programming language [Master's thesis, Yonsei University].
  7. Park, R.-S., Kwon, J.-K. & Lee, D.-Y. (2019). The effects of engineering tools on students' math academic achievement and math learning attitude in middle school mathematics geometrical unit. Journal of Digital Convergence, 17(12), 67-75. 
  8. Shin, G. & Suh, B. (2019). A study on development of teaching & learning materials related to coding for convergence education integrating mathematics and information. Journal of Science Education, 43(1), 17-42. 
  9. Shim, K. & Shim, S.-A. (2018). Development of teaching method of mathematics subject with python coding: Focusing on the content of 'Prime Decomposition' in the middle school mathematics subject of 2015 revised curriculum. Educational Research, 73, 43-64. 
  10. Lee, S.-G., Lee, J.-Y., Park, K.-E., Lee, J.H. & Ahn S.-C. (2015). Mathematics, art and 3D-printing in STEAM education. Communications of Mathematical Education, 29(1), 35-49. 
  11. Lee, S.-G. & Lee, J.H. (2019). Student-centered discrete mathematics class with cyber lab. Communications of Mathematical Education, 33(1), 1-19. 
  12. Lee, S.-G., Lee, J.H. & Park, K.-E. (2017). Linear algebra teaching in the digital age. Communications of Mathematical Education, 31(4), 367-387. 
  13. Lee, S.-G., Lee, J.H., Park, J.H. & Kim, E.-K. (2016). Interactive engineering mathematics laboratory. Communications of Mathematical Education, 30(3), 281-294. 
  14. Lee, J.H., Lee, S.-G. & Ham, Y. (2022). Case study on college calculus education for vocational high school graduates with coding. Communications of Mathematical Education, 36(4), 611-626. 
  15. Jeong, J. & Cho, H. (2020). Mathematising of coding education command: Focusing on algebra education. Journal of Educational Research in Mathematics, 30(1), 131-151. 
  16. Choi, I. (2020). Development and application of a 3D coding environment for mathematics learning. Journal of Educational Research in Mathematics, 30(2), 199-225. 
  17. Hong, G. J. (2022). Comparison of Scratch and Entry in terms of math education. Elementary Educational Research, 37(2), 163-175.
  18. Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. Jossey-Bass Publishers.
  19. Csikszentmihalyi, M. & Schneider, B. (2001). Becoming adult: How teenagers prepare for the world of work. Basic Books.
  20. Davies, A., Velickovic, P., Buesing, L. et al. (2021). Advancing mathematics by guiding human intuition with AI. Nature, 600, 70-74.
  21. Hurwitz, J., Morris, H., Sidner, C., & Kirsch, D. (2019). Augmented intelligence: The business power of human-machine collaboration. Auerbach Publications.
  22. National Research Council. (2013). The mathematical sciences in 2025. The National Academies Press.
  23. Zheng, N.-N., Liu, Z.-Y., Ren, P.-J. et al. (2017). Hybrid-augmented intelligence: collaboration and cognition. Frontiers of Information Technology & Electronic Engineering, 18(2), 153-179.