DOI QR코드

DOI QR Code

Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts

스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가

  • Minkyu Kang (Department of Mechanical Engineering, The University of Suwon) ;
  • Namgyeong Kim (Department of Mechanical Engineering, The University of Suwon) ;
  • Hyunwoo Nam (Department of Mechanical Engineering, The University of Suwon) ;
  • Tae Yeob Kang (Department of Mechanical Engineering, The University of Suwon)
  • 강민규 (수원대학교 산업 및 기계공학부 기계공학과) ;
  • 김남경 (수원대학교 산업 및 기계공학부 기계공학과) ;
  • 남현우 (수원대학교 산업 및 기계공학부 기계공학과) ;
  • 강태엽 (수원대학교 산업 및 기계공학부 기계공학과)
  • Received : 2024.06.10
  • Accepted : 2024.06.30
  • Published : 2024.06.30

Abstract

Corrosion inside electronic packages significantly impacts the system performance and reliability, necessitating non-destructive diagnostic techniques for system health management. This study aims to present a non-destructive method for assessing corrosion in copper interconnects using the Smith chart, a tool that integrates the magnitude and phase of complex impedance for visualization. For the experiment, specimens simulating copper transmission lines were subjected to temperature and humidity cycles according to the MIL-STD-810G standard to induce corrosion. The corrosion level of the specimen was quantitatively assessed and labeled based on color changes in the R channel. S-parameters and Smith charts with progressing corrosion stages showed unique patterns corresponding to five levels of corrosion, confirming the effectiveness of the Smith chart as a tool for corrosion assessment. Furthermore, by employing data augmentation, 4,444 Smith charts representing various corrosion levels were obtained, and artificial intelligence models were trained to output the corrosion stages of copper interconnects based on the input Smith charts. Among image classification-specialized CNN and Transformer models, the ConvNeXt model achieved the highest diagnostic performance with an accuracy of 89.4%. When diagnosing the corrosion using the Smith chart, it is possible to perform a non-destructive evaluation using electronic signals. Additionally, by integrating and visualizing signal magnitude and phase information, it is expected to perform an intuitive and noise-robust diagnosis.

전자패키지 내부의 부식이 시스템 성능 및 신뢰성에 큰 영향을 미치고 있어, 시스템 건전성 관리를 위해 부식에 대한 비파괴적 진단 기법의 필요성이 커지고 있다. 본 연구에서는 복소 임피던스의 크기와 위상을 통합적으로 시각화하는 도구인 스미스 차트를 활용하여, 구리 인터커넥트의 부식을 비파괴적으로 평가하는 방법을 제시하고자 한다. 실험을 위해 구리 전송선을 모사한 시편을 제작하고, MIL-STD-810G 기준 온습도 사이클에 노출시켜 시편에 부식을 인가하였다. R 채널 기반 색변화로 시편의 부식도를 정량적으로 평가하고 레이블링 하였다. 부식의 성장에 따라 시편의 S-파라미터와 스미스 차트를 측정한 결과, 5 단계의 부식도에 따라 유의미한 패턴의 변화가 관찰되어, 스미스 차트가 부식도 평가에 효과적인 도구임을 확인하였다. 더 나아가 데이터 증강을 통해 다양한 부식도를 갖는 4,444개의 스미스 차트를 확보하여, 스미스 차트를 입력 받아 구리 인터커넥트의 부식 단계를 출력하는 인공지능 모델을 학습시켰다. 이미지 분류에 특화된 CNN 및 Transfomrer 모델을 적용한 결과, ConvNeXt 모델이 정확도 89.4%로 가장 높은 부식 진단 성능을 보였다. 스미스 차트를 이용하여 전자패키지 내부 부식을 진단할 경우, 전자신호를 이용하는 비파괴적 평가를 수행할 수 있다. 또한. 신호 크기와 위상 정보를 통합적으로 시각화 하여 직관적이며 노이즈에 강건한 진단이 가능할 것으로 기대한다.

Keywords

Acknowledgement

이 연구는 2024 년도 수원대학교 학술진흥연구비 지원으로 수행되었습니다.

References

  1. B. Li, T. D. Sullivan, T. C. Lee, and D. Badami, "Reliability challenges for copper interconnects", Microelectronics Rel., 44(3), 365-380(2004).
  2. B. Choe, and Tae Yeob Kang, "Reliability Assessment of Solder Joints Using Electrical Model on Cracking and S-Parameter Pattern Analysis(in Kor.)", IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(6), 990-998 (2021).
  3. J. Koo, and C. Kim, "Interconnect Reliability Degradation Monitoring Circuitry", Proceedings of the Korean Institute of Electrical and Electronic Engineers Conference, 16-17 (2010).
  4. T. Y. Kang, "Reliability Assessment on Electrical Interconnects by Machine Learning With Magnitude and Phase Data of RF signals", Korean Society of Mechanical Engineers-Reliability Division 2023 Spring Conference, 167 (2023).
  5. D. Seo, T. Kang, J. Yoo, J. Min, and C. Park, "The defect detection circuit of an electronic circuit through impedance change detection that induces a change in S-parameter", J. Korean Inst. Electr. Electron. Eng., 25(4), 689-696 (2021).
  6. T. Y. Kang, D. Seo, and J. Min, "Cause and Severity Evaluation of Defects in Cu interconnects by Machine Learning of S-parameter patterns", Korean Society of Mechanical Engineers-Reliability Division 2020 Spring Conference, 186 (2020).
  7. N. Kim, M. Kang, H. Nam, and T. Y. Kang, "Detecting Non-Destructive Corrosion of Copper Interconnects in Electronic Packages Using Smith Charts", Proceedings of The Korean Society of Mechanical Engineers Conference, Korean Society of Mechanical Engineers-Reliability Division 2024 Spring Conference,142 (2024).
  8. T. Y. Kang, D. Seo, J. Min, and T.-S. Kim, "Quantification of Performance Variation and Crack Evolution of Bond-Wire Interconnects Under Harsh Temperature Environments by S-Parameter Analysis", IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(6), 990-998 (2021).
  9. D. Roller, and W. R. Scott, "Detecting and measuring corrosion: using electrical resistance techniques", Anti-Corrosion Methods and Materials, 8(3), 71-76(1961).
  10. M. H. Azarian, M. H., D. Kwon, and M. Pecht, "Use of the skin effect for detection of interconnect degradation", IMAPS 42nd Int. Symposium on Microelectronics, 1-5 (2009).
  11. F. Caspers, "RF engineering basic concepts: the Smith chart", arXiv:1201.4068 (2012).
  12. "MIL-STD-810G: Environmental Engineering Considerations and Laboratory Tests", U.S. Department of Defense, (2008).
  13. G.-L. Farid, J. Cervantes, A. Lopez, and L. Rodriguez, "Segmentation of images by color features: A survey", Neurocomputing, 292, 1-27 (2018).
  14. K. W. Liao and Y. T. Lee, "Detection of rust defects on steel bridge coatings via digital image recognition", Automation in Construction, 71(2), 294-306 (2016).
  15. V. Bondada, D. K. Pratihar, and C. S. Kumar, "Detection and quantitative assessment of corrosion on pipelines through image analysis", Procedia Computer Science, 133, 804-811 (2018).
  16. M. Khayatazad, L. D. Pue, and W. D. Waele, "Detection of corrosion on steel structures using automated image processing", Developments in the Built Environment, 3, 100022 (2020).
  17. S. H. S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee, "Impact of fully connected layers on performance of convolutional neural networks for image classification", Neurocomputing, 378, 112-119 (2020).
  18. W. Rawat and Z. Wang, "Deep convolutional neural networks for image classification: A comprehensive review", Neural computation, 29(9), 2352-2449 (2017).
  19. J. Canny, "A computational approach to edge detection", IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679-698(1986).
  20. C. Kosemen and D. Birant, "Multi-label classification of line chart images using convolutional neural networks", SN Appl. Sci., 2(1250), (2020).
  21. F. J. P. Montalbo and D. P. Y. Barfeh, "Classification of stenography using convolutional neural networks and canny edge detection algorithm", 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), 305-310 (2019).
  22. Z. Liu, H. Mao, C.Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, "A convnet for the 2020s", 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 11976-11986 (2022).
  23. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, "An image is worth 16x16 words: Transformers for image recognition at scale", arXiv:2010.11929 (2020).
  24. D. Kwon, M. H. Azarian, and M. Pecht, "Early Detection of Interconnect Failure by Continuous Monitoring of RF Impedance", IEEE Transactions on Device and Materials Reliability, 9(2), 296-304 (2009).