DOI QR코드

DOI QR Code

Research on Evaluation of Properties of PA6/PA66/GF Composite according to Injection Pressure and Simulation of Damping Performance

엔진마운트 브라켓용 PA66/GF 복합재료의 특성 평가 및 진동감쇠 성능 시뮬레이션에 대한 연구

  • Seong-Hun Yu (DYETEC, Computer Aided Engineering(CAE) Center) ;
  • Hyun-Sung Yun (DYETEC, Computer Aided Engineering(CAE) Center) ;
  • Dong-Hyun Yeo (DYETEC, Computer Aided Engineering(CAE) Center) ;
  • Jun-Hee Lee (DYETEC, Computer Aided Engineering(CAE) Center) ;
  • Jong-Su Park (Pyung Hwa Industrials Co., Ltd) ;
  • Jee-hyun Sim (DYETEC, Computer Aided Engineering(CAE) Center)
  • 유성훈 ;
  • 윤현성 ;
  • 여동현 ;
  • 이준희 ;
  • 박종수 ;
  • 심지현
  • Received : 2024.01.16
  • Accepted : 2024.03.13
  • Published : 2024.04.30

Abstract

Research was conducted on a PA material-based composite material manufacturing method for application to engine mount brackets. Engine mount brackets must have heat resistance, impact resistance, and damping performance. PA66 resin was used as the base material for the composite material. The glass fiber was used as the reinforcement material. The composite material was manufactured using the injection molding method. The thermal, mechanical, and morphological characteristics were analyzed depending on the content of glass fiber. 3D model was created using the property evaluation database of composite materials(input data). The damping performance of the generated 3D model was extracted as out-put data. The reason for evaluating the characteristics of PA-based composite materials and conducting simulations on the damping performance of 3D models of engine brackets is because product performance can be predicted without manufacturing actual automobile parts and conducting damping performance tests. As a result of the damping simulation, damping performance tended to increase proportionally as the mass fraction of the reinforcement increased. But above a certain level, it no longer increased and slightly decreased. As a result of comparing the actual experimental values a nd the simulated values, the approximate value was within ±5%.

내열성 및 내충격성, 진동 감쇠 성능이 필수인 엔진마운트 브라켓(engine mount braket)에 적용하기 위한 PA소재 기반 복합재료 제조 방법에 대한 연구를 실시하였다. 복합재료의 기지재로 PA66 수지를 활용하였고, 강화재로 유리섬유를 활용하였다. 복합재료는 injection molding 방법으로 제조하였으며, 보강재인 유리섬유 함량에 따라 열적 특성과 기계적 특성, 형태학적 특성 분석을 진행하였다. 이때, 복합재료의 특성 평가 데이터베이스를 in-put 데이터로 활용하여 3D 모델을 생성하였다. 생성된 3D모델의 진동 감쇠 성능(vibration damping)을 out-put 데이터로 추출하였다. PA기반 복합재료의 특성평가 및 엔진브라켓 형태 3D모델의 진동 감쇠 성능에 대한 시뮬레이션을 진행하는 이유는 실제 자동차 부품을 제조하여 진동 감쇠 성능 시험을 진행하지 않아도 제품의 성능을 예측할 수 있기 때문에, 우수한 제품을 개발하기 위한 개발 비용이 감소할 수 있다. 실제로 시험을 진행하지 않고도 제품 성능을 예측할 수 있기 때문에, 제품 개발에 필요한 시간도 절감할 수 있을 것이라 예상된다. 진동 감쇠 성능 시뮬레이션 결과, 강화재의 질량분율이 높아질수록 진동감쇠 성능이 비례하여 증가하는 경향을 나타내지만, 어느 수준 이상에서는 더 이상 증가하지않고, 소폭 감소하는 결과를 나타내었다. 실제 실험값과 시뮬레이션 값과의 비교 결과, ±5% 이내의 근사치를 나타내었으며, 강화재의 질량분율이 60 wt.%일 때 결과값의 차이가 가장 크게 발생하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 글로벌주력산업품질대응 뿌리기술개발사업(20016443) 및 가상공학플랫폼 구축사업(P0022335)의 연구비 지원으로 수행되었습니다.

References

  1. A. Al Rashid, H. Ikram, and M. Koc, "Additive Manufacturing and Mechanical Performance of Carbon Fiber Reinforced Polyamide-6 Composites", Materials Today: Proceedings, Vol. 62, 2022, pp. 6359-6363.
  2. X. Zhang, W. Fan, and T. Liu, "Fused Deposition Modeling 3D Printing of Polyamide-based Composites and Its Applications", Composites Communications, Vol. 21, 2021, 100413.
  3. M. M. Attia, O. Ahmed, O. Kobesy, and A. S. Malek, "Behavior of FRP Rods under Uniaxial Tensile Strength with Multiple Materials as an Alternative to Steel Rebar", Case Studies in Construction Materials, Vol. 17, 2022, e01241.
  4. S. K. Ha, S. Na, and H. K. Lee, "Bond Characteristics of Sprayed FRP Composites Bonded to Concrete Substrate Considering Various Concrete Surface Conditions", Composite Structures, Vol. 100, 2013, pp. 270-279.
  5. M. Bondy, W. Rodgers, and W. Altenhof, "Tensile Fatigue Characterization of Polyamide 66/carbon Fiber Direct/in-line Compounded Long Fiber Thermoplastic Composites", Composites Part B: Engineering, Vol. 173, 2019, 106984.
  6. X. Bin, W. M.-Y. Wu, X.-Y. Lei, J.-G., Zhou, Z.-W. Fu, L.-Y. Zhu, and L. Kuan, "An Injecting Molding Method for Forming the HFRP/PA6 Composite Parts", Polymers, Vol. 14, No. 23, 2022, pp. 5085-5092.
  7. B. Matthew and A. William, "Experimental Characterisation of the Mechanical Properties of a Carbon Fibre/PA66 LFT Automotive Seatback under Quasi-static and Impact Loading", International Journal of Crashworthiness, Vol. 25, No. 4, 2020, pp.401-420.
  8. S. Wei, X. Ding, Y. Qiu, V. D. Waele, and H. Guo, "Enhanced Performance Polyamide Membrane by Introducing Highporosity SOD/GO Composite Interlayer to Tailor the Interfacial Polymerization Process", Chemical Engineering Journal, Vol. 481, No. 1, 2024, 148595.
  9. J.-B. Li, C.-Y. Zhu, B.-B. Guo, C. Liu, J.-H. Xin, C. Zhang, J. Wu, L. Zhang, H.-C. Yang, and Z.-K. Xuo, "Ultrahigh-permeance Polyamide Thin-film Composite Membranes Enabled by Interfacial Polymerization on a Macro-porous Substrate Toward Organic Solvent Nanofiltration", Journal of Membrane Science, Vol. 693, 2024, 122342.
  10. R. Song, M. Morak, and A. Muliana, "A Thermo-viscoelastic Model of Anisotropic Polyamide Short Glass Fiber Composites", Composite Structures, Vol. 296, 2022, 115850.
  11. Y. Rong, P. Zhao, T. Shen, J. Gao, S. Zhou, J. Huang, G. Zhao, and Y. Liu, "Mechanical and Tribological Properties of Basalt Fiber Fabric Reinforced Polyamide 6 Composite Laminates with Interfacial Enhancement by Electrostatic Self-assembly of Graphene Oxide", Journal of Materials Research and Technology, Vol. 27, 2023, pp. 7795-7806.
  12. A. Salazar, A.J. Cano, and J. Rodriguez, "Mechanical and Fatigue Behaviour of Polyamide 12 Processed via Injection Moulding and Selective Laser Sintering. Analysis Based on Kitagawa-Takahashi Diagrams", Engineering Fracture Mechanics, Vol. 275, 2022, 108825.
  13. Y. Yan, Y.-H. Huang, Y. Wang, Z.-C. Xiao, and M.-B. Yang, "Polyamide 6 (PA6)/polyethylene Terephthalate (PET) Blends with Gradient and Encapsulation Structure Developed by Injection Molding", Polymer, Vol. 180, 2019, 121679.
  14. M. Herrero, K. Nunez, R. Gallego, J.C. Merino, and J.M. Pastor, "Sepiolite as Replacement of Short Glass Fibre in Polyamide Composites for Injection Moulding Applications", Applied Clay Science, Vol. 162, 2018, pp. 129-137.
  15. H.-X. Huang, B. Wang, and W.-W. Zhou, "Polymorphism in Polyamide 6 and Polyamide 6/clay Nanocomposites Molded via Water-assisted Injection Molding", Composites Part B: Engineering, Vol. 43, 2012, pp. 972-977.
  16. D. Teixeira, M. Giovanela, L.B. Gonella, and J.S. Crespo, "Influence of Injection Molding on the Flexural Strength and Surface Quality of Long Glass Fiber-reinforced Polyamide 6.6 Composites", Materials & Design, Vol. 85, 2015, pp. 695-706.
  17. L. Quagliato, J. Lee, J.H. Fonseca, D. Han, H. Lee, and N. Kim, "Influences of Stress Triaxiality and Local Fiber Orientation on the Failure Strain for Injection-molded Carbon Fiber Reinforced Polyamide-6", Engineering Fracture Mechanics, Vol. 250, 2021, 107784.
  18. L. Quagliato, Y. Kim, J. H. Fonseca, D. Han, S. Yun, H. Lee, N. Park, H. Lee, and N. Kim, "The Influence of Fiber Orientation and Geometry-induced Strain Concentration on the Fatigue Life of Short Carbon Fibers Reinforced Polyamide-6", Materials & Design, Vol. 190, 2020, 108569.
  19. A. Bernasconi and F. Cosmi, "Analysis of the Dependence of the Tensile Behaviour of a Short Fibre Reinforced Polyamide Upon Fibre Volume Fraction, Length and Orientation", Procedia Engineering, Vol. 10, 2011, pp. 2129-2134.
  20. A. Hendlmeier, F. Stojcevski, R. Alexander, S. Gupta, and L. C. Henderson, "Examining Conductivity, Current Density, and Sizings Applied to Carbon Fibers during Manufacture and Their Effect on Fiber-to-matrix Adhesion in Epoxy Polymers", Composites Part B: Engineering, Vol. 179, 2019, 107494.
  21. G. Viscusi, E. Lamberti, M. R. Acocella, and G. Gorrasi, "Production of Electrospun Hybrid Membranes Based on Polyamide 6 Reinforced with Hemp Fibers Dissolved in 1-ethyl-3-methylimidazolium Dicyanamide Ionic Liquid", Journal of Molecular Liquids, Vol. 387, 2023, 122656.
  22. N. Ni, Y. Wen, D. He, X. Yi, Z. Zhao, and Y. Xu, "Synchronous Improvement of Loss Factors and Storage Modulus of Structural Damping Composite with Functionalized Polyamide Nonwoven Fabrics", Materials & Design, Vol. 94, 2016, pp. 377-383.
  23. X. Chen, S. Mei, W. Zhao, Y. Zhang, X. Zhang, Z. Cui, P. Fu, X. Pang, M. Liu, and Y. Ye, "Thermoplastic Polyamide Elastomer Based Flexible Humidity Sensor for Breath Monitoring", Materials & Design, Vol. 235, 2023, 112438.
  24. ASTM C117, Standard Test Method for Materials Finer than 75㎛ (No.200) Sieve in Mineral Aggregates by Washing, ASTM: West Conshohocken, PA, USA, 2022.
  25. X. Wang, G. Wu, and P. Xie, "Microstructure and Properties of Glass Fiber-reinforced Polyamide/nylon Microcellular Foamed Composites," Polymers, Vol. 12, 2020, pp. 1-11.
  26. P. Lee, J. Ha, and B. Kim, "Melt Flow Improvement of Polyamide 6/Glass Fiber Composite Using Amide-type Lubricant," Polymer, Vol. 42, 2018, pp. 568-572.