DOI QR코드

DOI QR Code

Riser Configuration Design for a 15-MW Floating Offshore Wind Turbine Integrated with a Green Hydrogen Facility

  • Sung-Jae Kim (Fisheries Engineering Division, National Institute of Fisheries Science) ;
  • Sung-Ju Park (School of Electrical & Control Engineering, Tongmyong University)
  • 투고 : 2024.03.05
  • 심사 : 2024.06.05
  • 발행 : 2024.06.30

초록

Green hydrogen presents a sustainable and environmentally friendly solution for clean energy production and transportation. This study aims to identify the optimal profile of green hydrogen transportation risers originating from a floating offshore wind turbine (FOWT) integrated with a hydrogen production facility. Employing the Cummins equation, a fully coupled dynamic analysis for FOWT with a flexible riser was conducted, with the tower, mooring lines, and risers described using a lumped mass line model. Initially, motion response amplitude operators (RAOs) were compared with openly published results to validate the numerical model for the FOWT. Subsequently, a parametric study was conducted on the length of the buoyancy module section and the upper bare section of the riser by comparing the riser's tension and bending moment. The results indicated that as the length of the buoyancy module increases, the maximum tension of the riser decreases, while it increases with the lengthening of the bare section. Furthermore, shorter buoyancy modules are expected to experience less fatigue damage, with the length of the bare section having a relatively minor impact on this phenomenon. Consequently, to ensure safety under extreme environmental conditions, both the upper bare section and the buoyancy module section should be relatively short.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Grant No. 2022R1G1A1003855) and supported by a grant from Tongmyong University Innovated University Research Park I-URP) funded by Busan Metropolitan City, Republic of Korea IURP2401).

참고문헌

  1. Allen, C., Viselli, A., Goupee, D. A., H., Gaertner, E., Abbas, N., Hall, M., & Barter, G. (2020). Definition of the UMaine VolturnUS-S reference platform developed for the IEA wind 15-megawatt offshore reference wind turbine technical report. http://www.nrel.gov/publications.
  2. API. (2008). API Recommended Practice 2SK. Design and analysis of stationkeeping systems for floating offshore structures (3rd ed.)
  3. Balli, E., & Zheng, Y. (2022). Pseudo-coupled approach to fatigue assessment for semi-submersible type floating offshore wind turbines. Ocean Engineering, 261, 112119. https://doi.org/10.1016/j.oceaneng.2022.112119
  4. Boo, S. Y., Stenffen, S., & Kim, D. (2018). Concept design of floating wind platforms of Y-wind and T-wind for southeast offshore of Korea. Fall Conference of KORA Wind Energy Association, 1016(DA2)_SE1_04. http://www.vloffshore.com/index_htm_files/1016_DA2_SE1_04_Concept%20Design%20of%20Floating%20Wind%20Platforms%20of%20Y-Wind%20and%20TWind.pdf
  5. DNV GL. (2021a). Position Mooring (DNVGL-OS-E301).
  6. DNV GL. (2021b). Design of Offshore Wind Turbine Structures (DNVGL-OS-J101).
  7. DNV GL. (2021c). Environmental conditions and environmental loads. Norway (DNVGL-RP-C205).
  8. Elsas, J. H., Casaprima, N. A. G., Cardoso, P. H. S., & Menezes, I. F. M. (2021). Bayesian optimization of riser configurations. Ocean Engineering, 236, 109402. https://doi.org/10.1016/j.oceaneng.2021.109402
  9. Eurek, K., Sullivan, P., Gleason, M., Hettinger, D., Heimiller, D., & Lopez, A. (2017). An improved global wind resource estimate for integrated assessment models. Energy Economics, 64, 552-567. https://doi.org/10.1016/j.eneco.2016.11.015
  10. European Commission. (2015). Qualification of innovative floating substructures for 10 MW wind turbines and water depths greater than 50 m. https://doi.org/10.3030/640741
  11. European Commission. (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A hydrogen strategy for a climate-neutral Europe.
  12. Heo, K., Park, H., Yuck, R.-H., & Lee, D. (2023). Numerical investigation of a floating-type support structure (Tri-Star floater) for 9.5 MW wind turbine generators. Energies, 16(24), 7961. https://doi.org/10.3390/en16247961
  13. Ibrahim, R. L., Huang, Y., Mohammed, A., & Adebayo, T. S. (2023). Natural resources-sustainable environment conflicts amidst COP26 resolutions: Investigating the role of renewable energy, technology innovations, green finance, and structural change. International Journal of Sustainable Development and World Ecology, 30(4), 445-457. https://doi.org/10.1080/13504509.2022.2162147
  14. International Electrotechnical Commission (IEC). (2019). Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines (IEC TS 61400-3-2:2019). https://webstore.iec.ch/publication/29244
  15. Jin, C., Lee, I., Park, J., & Kim, M. (2023). Dynamic behavior assessment of OC4 semi-submersible FOWT platform through Morison equation. Journal of Ocean Engineering and Technology, 37(6), 238-246. https://doi.org/10.26748/KSOE.2023.030
  16. Lee, K., Kim, H.-S., & Kim, B. W. (2023). A study on the global motion performance of floater and mooring due to arrangement of detachable mooring system. Journal of Wind Energy, 14(2), 26-33. https://doi.org/10.33519/KWEA.2023.14.2.003
  17. Li, X., Ji, H., Zhang, B., Liu, T., & Ye, W. (2016). Design of flexible riser for FPSO in South China Sea. Proceedings of the 26th International Ocean and Polar Engineering Conference, 109-116.
  18. Martinez-Luengo, M., Kolios, A., & Wang, L. (2017). Parametric FEA modelling of offshore wind turbine support structures: Towards scaling-up and CAPEX reduction. International Journal of Marine Energy, 19, 16-31. https://doi.org/10.1016/j.ijome.2017.05.005
  19. Niranjan, R., & Ramisetti, S. B. (2022). Insights from detailed numerical investigation of 15 MW offshore semi-submersible wind turbine using aero-hydro-servo-elastic code. Ocean Engineering, 251, 111024. https://doi.org/10.1016/j.oceaneng.2022.111024
  20. Orcina. (2023). OrcaFlex documendation. https://www.orcina.com/resources/documentation/
  21. Pham, T. Q. M., Im, S., & Choung, J. (2021). Prospects and economics of Offshore wind turbine systems. Journal of Ocean Engineering and Technology, 35(5), 382-392. https://doi.org/10.26748/KSOE.2021.061
  22. Pillai, A. C., Gordelier, T. J., Thies, P. R., Dormenval, C., Wray, B., Parkinson, R., & Johanning, L. (2022). Anchor loads for shallow water mooring of a 15 MW floating wind turbine - Part I: Chain catenary moorings for single and shared anchor scenarios. Ocean Engineering, 266, 111816. https://doi.org/10.1016/j.oceaneng.2022.111816
  23. Rentschler, M. U. T., Adam, F., & Chainho, P. (2019). Design optimization of dynamic inter-array cable systems for floating offshore wind turbines. Renewable and Sustainable Energy Reviews, 111, 622-635. https://doi.org/10.1016/J.RSER.2019.05.024
  24. Trapper, P. A. (2020). Feasible numerical analysis of steel lazy-wave riser. Ocean Engineering, 195, 106643. https://doi.org/10.1016/j.oceaneng.2019.106643
  25. Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273. https://doi.org/10.1016/J.IJHYDENE.2021.04.016