DOI QR코드

DOI QR Code

Collision-Damage Analysis of a Floating Offshore Wind Turbine Considering Ship-Collision Risk

  • Young-Jae Yu (UlsanLab Inc.) ;
  • Sang-Hyun Park (UlsanLab Inc.) ;
  • Sang-Rai Cho (UlsanLab Inc.)
  • 투고 : 2023.11.01
  • 심사 : 2024.04.23
  • 발행 : 2024.06.30

초록

As the number of offshore wind-power installations increases, collision accidents with vessels occur more frequently. This study investigates the risk of collision damage with operating vessels that may occur during the operation of an offshore wind turbine. The floater used in the collision study is a 15 MW UMaine VolturnUS-S (semi-submersible type), and the colliding ships are selected as multi-purpose vessels, service operation vessels, or anchor-handling tug ships based on their operational purpose. Collision analysis is performed using ABAQUS and substantiation is performed via a drop impact test. The collision analyses are conducted by varying the ship velocity, displacement, collision angle, and ship shape. By applying this numerical model, the extent of damage and deformation of the collision area is confirmed. The analysis results show that a vessel with a bulbous bow can cause flooding, depending on the collision conditions. For damage caused by collision, various collision angles must be considered based on the internal stiffener arrangement. Additionally, the floater can be flooded with relatively small collision energy when the colliding vessel has a bulbous bow.

키워드

과제정보

This study was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No.20213000000030).

참고문헌

  1. BBN. (2021, July 28). Incident update: offshore platform collided with monopile foundation. BBN. https://breakbulk.news/incidentupdate-offshore-platform-collided-with-monopile-foundation/
  2. Christopher, A., Anthony, V., Habib, D., Andrew, G., Evan, G., Nikhar, A., Matthew, H., & Garrett, B. (2020). Definition of the UMaine VolturnUS-S reference platform developed for the IEA wind 15-Megawatt offshore reference wind turbine (Report No. NREL/TP-5000-76773). National Renewable Energy Lab. https://doi.org/10.2172/1660012
  3. Cloughley. T. M. G. (1978). Problems with offshore structures still being faces by oil companies. Oceanology International 78 Conference, 75-78.
  4. Dai, L., Ehlers, S., Rausand, M., & Utne, I. B. (2013). Risk of collision between service vessels and offshore wind turbines. Reliability engineering & system safety, 109, 18-31. https://doi.org/10.1016/j.ress.2012.07.008
  5. DNV. (2021) Floating wind turbine structures (DNV-ST-0119). https://www.dnv.com/energy/standards-guidelines/dnv-st-0119-floating-wind-turbine-structures/
  6. Do, Q. T., Muttaqie, T., Shin, H. K., Cho, S. R. (2018). Dynamic lateral mass impact on steel stringer-stiffened cylinders. International Journal of Impact Engineering, 116, 105-126. https://doi.org/10.1016/j.ijimpeng.2018.02.007
  7. Do, Q. T., Huyuhm, V. V., Vu, M. T., Tuyen, V. V., Pham, T. N., Tra, T. H., Vu, Q. V., & Cho, S. R. (2020). A new formulation for predicting the collision damage of steel stiffened cylinders subjected to dynamic lateral mass impact. Applied sciences, 10(11), 3856. https://doi.org/10.3390/app10113856
  8. Do, Q. T., Ghanbari, G. T., & Prabowo, A. R. (2023). Developing empirical formulations to predict residual strength and damages in tension-leg platform hulls after a collision. Ocean Engineering, 286(2), 15668. https://doi.org/10.1016/j.oceaneng.2023.115668
  9. Donegan, E. (1982). New platform designs minimize ship collision damage. Petroleum Engineering International, pp.76.
  10. Durakovic, A. (2022, February 2). Vattenfall shows damage caused by cargo ship adrift ai hollandse kust zuid offshore wind farm. Offshore WIND.biz. https://www.offshorewind.biz/2022/02/02/vattenfall-shows-damage-caused-by-cargo-ship-adrift-at-hollandse-kust-zuid-offshore-wind-farm/
  11. Mandra, J. O. (2023, April 27). A cargo ship arrived in Emden, Germany with a massive hole in its hull after reportedly striking a wind farm. Offshore Energy. https://www.offshore-energy.biz/cargo-shipstrikes-orsteds-gode-wind-1-offshore-wind-farm-suffers-massive-damage/
  12. Minorsky, V. U. (1959). An analysis if ship collisions with reference to protection of nuclear power plants. Journal of Ship Research, 3(2), 194-200. https://doi.org/10.5957/jsr.1999.43.3.194
  13. Park, J. (2017). Study on the material properties of marine structures under impact loads (Publication No. M-EM769455). [Master thesis, University of Ulsan].
  14. Park, S.-H., Yoon, S. H., Muttaqie, T., Do, Q. T., & Cho, S.-R. (2023). Effects of local denting and fracture damage on the residual longitudinal strength of box girders. Journal of Marine Science and Engineering, 11(1), 76. https://doi.org/10.3390/jmse11010076
  15. Renews.BIZ. (2020). Wind farm workers injured in CTV accident off Germany. Renews.BIZ. https://renews.biz/59873/wind-farmworkers-injured-in-vessel-collision-off-germany/
  16. Ren, Y., Yu, Z., Hua, X., Amdahl, J., & Chen, Z. (2023). Performance of large diameter steel tubes from a floating offshore wind turbine under lateral under lateral impact loads. Advances in the collision and grounding of ships and offshore structures (pp. 433-440). CRC press. https://doi.org/10.1201/9781003462170-52
  17. Ringsberg, J. W., Amdahl, J., Chen, B. Q., Cho, S .R., Ehlers, S., Hu, Z., Kubiczek, J. M., Korgesaar, M., Liu, Q., & Marinatos, J. M., (2018). MARSTRUCT benchmark study on nonlinear FE simulation of an experiment of an indenter impact with a ship side shell structure. Marine Structire, 59, 142-157. https://doi.org/10.1016/j.marstruc.2018.01.010
  18. Shin, H. K., Kim, D. J., & Yu, Y. J. (2019). Offshore wind power equipment of floating type (Korea Patent No.10-21917700000). Korean Intellectual Property Offiece. https://doi.org/10.8080/1020190072254
  19. Simulia. (2022). Abaqus/CAE user's manual. Simulia.
  20. Vandegar, G., Sone Oo, Y. P., Ladeira, I., Le Sourne, H., & Echeverry, S. (2023). A simplified method to assess the elastoplastic response of standalone tubular floating offshore wind turbine supports subjected to ship impact. Advances in the collision and grounding of ships and offshore structure (pp. 447-454). CRC Press. https://doi.org/10.1201/9781003462170-54
  21. Windfair. (2022, October 2). Tenne T provides update on damaged offshore wind platform. Windfair. https://w3.windfair.net/windenergy/news/39824-tennet-offshore-damage-netherlands-platform-wind-farm-drifting-storm-jackets-ship-collision-hollandse-kust-zuid
  22. Yoon, D. H., & Choung, J. M. (2023). Collision simulation of a floating offshore wind turbine considering ductile fracture and hydrodynamics using hydrodynamic plug-in HydroQus. Journal of Ocean Engineering and Technology, 37(3), 111-121. https://doi.org/10.26748/KSOE.2023.004