DOI QR코드

DOI QR Code

Novel Synthesis of MnO2-SiC Fiber-TiO2 Ternary Composite and Effective Photocatalytic Degradation with Standard Dyes

  • Latiful Kabir (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Yeon Woo Choi (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Yun Seo Shin (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Yeon Ji Shin (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Geun Chan Kim (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Jun Hyeok Choi (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Jo Eun Kim (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Young Jun Joo (Aerospace Convergence Materials Center, Korea Institutes of Ceramic Engineering and Technology) ;
  • Kwang Youn Cho (Aerospace Convergence Materials Center, Korea Institutes of Ceramic Engineering and Technology) ;
  • Hyuk Kim (Carbontec Co.) ;
  • Je-Woo Cha (Carbontec Co.) ;
  • Won-Chun Oh (Department of Advanced Materials Science & Engineering, Hanseo University)
  • 투고 : 2024.03.26
  • 심사 : 2024.05.28
  • 발행 : 2024.06.27

초록

In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.

키워드

참고문헌

  1. J. Singh, P. Gupta and A. Das, Sustainable Agriculture Reviews, p.109, Springer Link, Berlin, Germany (2021). 
  2. W. Mohammed, M. Matalkeh, R. M. A. Soubaihi, A. Elzatahry and K. M. Saoud, ACS Omega, 8, 40063 (2023). 
  3. S. Y. Lee, D. Kang, S. Jeong, H. T. Do and J. H. Kim, ACS Omega, 5, 4233 (2020). 
  4. Y. S. Wudil, U. F. Ahmad, M. A. Gondal, M. A. A. Osta, A. Almohammedi, R. S. Sa'id, F. Hrahsheh, K. Haruna and M. J. S. Mohamed, Arabian J. Chem., 16, 104542 (2023). 
  5. B. Viswanathan, Curr. Catal., 7, 99 (2018). 
  6. H. A. Kiwaan, T. M. Atwee, E. A. Azab and A. A. El-Bindary, J. Mol. Struct., 1200, 127115 (2020). 
  7. M. A. Rauf, M. A. Meetani and S. Hisaindee, Desalination, 276, 13 (2011). 
  8. S. Luo, R. Wang, J. Yin, T. Jiao, K. Chen, G. Zou, L. Zhang, J. Zhou, L. Zhang and Q. Peng, ACS Omega, 4, 3946 (2019). 
  9. A. Salama, A. Mohamed, N. M. Aboamera, T. A. Osman and A. Khattab, Appl. Nanosci., 8, 155 (2018). 
  10. S. Li, Q. Lin, X. Liu, L. Yang, J. Ding, F. Dong, Y. Li, M. Irfan, P. Zhang, RSC Adv., 8, 20277 (2018). 
  11. T. G. Ambaye and K. Hagos, Nanotechnol. Environ. Eng., 5, 28 (2020). 
  12. W. Chairungsri, P. Pholachan, S. Sumitsawan, Y. Chimupala and P. Kijjanapanich, Sustainability, 15, 12418 (2023). 
  13. P. C. Nagajyothi, T. V. M. Sreekanth, R. Ramaraghavulu, K. C. Devarayapalli, K. Yoo, S. V. P. Vattikuti and J. Shim, J. Mater. Sci.: Mater. Electron., 30, 14890 (2019). 
  14. Z. Othman, A. Sinopoli, H. R. Mackey and K. A. Mahmoud, ACS Omega, 6, 33325 (2021). 
  15. A. Pant, R. Tanwar, B. Kaur and U. K. Mandal, Sci. Rep., 8, 14700 (2018). 
  16. M. Mazzanti, S. Caramori, M. Fogagnolo, V. Cristino and A. Molinari, Nanomaterials, 10, 2147 (2020). 
  17. C. W. Kartikowati, A. L. Wulansari, B. Poerwadi, Supriyono, A. F. Arif, T. Sulistyaningsih and O. Arutanti, IOP Conf. Ser.: Mater. Sci. Eng., 1143, 012077 (2021). 
  18. A. Halfadji, A. Chougui, R. Djeradi, F. Z. Ouabad, H. Aoudia and S. Rajendrachari, ACS Omega, 8, 39907 (2023). 
  19. H. Chen, C. Xue, D. Cui, M. Liu, Y. Chen, Y. Li and W. Zhang, RSC Adv., 10, 15245 (2020). 
  20. N. Abbas, G. N. Shao, M. S. Haider, S. M. Imran, S. S. Park and H. T. Kim, J. Ind. Eng. Chem., 39, 112 (2016). 
  21. H. Bao, X. Chen, J. Fang, Z. Jiang and W. Huang, Catal. Lett., 125, 160 (2008). 
  22. H. An, L. Yan, H. Wang, C. Chang, M. Li, X. He and W. Huang, Mater. Res. Express, 5, 085028 (2018). 
  23. Y.-H. Chiu, T.-F. M. Chang, C.-Y. Chen, M. Sone and Y.-J. Hsu, Catalysts, 9, 430 (2019). 
  24. S. Xia, L. Zhang, G. Pan, P. Qian and Z. Ni, Phys. Chem. Chem. Phys., 17, 5345 (2015). 
  25. D. Mondal, S. Das, B. K. Paul, D. Bhattacharya, D. Ghoshal, A. L. Gayen, K. Das and S. Das, Mater. Res. Bull., 115, 159 (2019). 
  26. D. Barreca, F. Gri, A. Gasparotto, T. Altantzis, V. Gombac, P. Fornasiero and C. Maccato, Inorg. Chem., 57, 14564 (2018). 
  27. X. Shi, H. Zheng, A. M. Kannan, K. Perez-Salcedo and B. Escobar, Inorg. Chem., 58, 5335 (2019). 
  28. B. Sambandam, V. Mathew, S. Kim, S. Lee, S. Kim, J. Y. Hwang, H. J. Fan and J. Kim, Chem, 8, 924 (2022). 
  29. B. Yin, S. Zhang, Y. Jiao, Y. Liu, F. Qu and X. Wu, Cryst EngComm, 16, 9999 (2014). 
  30. A. Gagrani, J. Zhou and T. Tsuzuki, Ceram. Int., 44, 4694 (2018). 
  31. J. Yu, C. T. K. Nguyen and H. Lee, Preparation of Blue TiO2 for Visible-Light-Driven Photocatalysis, p.227, In Titanium Dioxide - Material for a Sustainable Environment, IntechOpen, London, UK (2018). 
  32. K. A. Khan and A. Shah, J. Nisar, RCS Adv., 14, 2504 (2024). 
  33. K. Pstrowska, H. Czapor-irzabek and A. Kiersnowski, Photochem. Photobiol., 93, 558 (2017). 
  34. T. Zou, C. Xie, Y. Liu, S. Zhang, Z. Zou and S. Zhang, J. Alloy. Compd., 552, 504 (2013). 
  35. D. Hao, Z. Yang, C. Jiang and J. Zhang, Appl. Catal., B, 144, 196 (2014). 
  36. R. Thambidurai, G. Gobi, R. Uthrakumar, C. Inmozhi and K. Kaviyarasu, Dig. J. Nanomater. Bios., 18, 869 (2023). 
  37. K. H. Tseng, M. Y. Chung and C. Y. Chang, Nanomaterials, 7, 133 (2017). 
  38. A. B. Bogeat, M. A. Franco, C. F. Gonzalez and V. G. Serrano, J. Therm. Anal. Calorim., 125, 65 (2016). 
  39. F. Wang, S. Min, Y. Han and L. Feng, Superlattices Microstruct., 48, 170 (2010). 
  40. S. Harrison and M. Hayne, Sci. Rep., 7, 11638 (2017).