DOI QR코드

DOI QR Code

Ecological and Geomorphic Fallout of Escalating River Mining Activities: A Review

  • Sk. Rakibul Islam (Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET)) ;
  • Rafi Uddin (Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET)) ;
  • Miftahul Zannat (Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET)) ;
  • Jahangir Alam (Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET))
  • Received : 2023.11.10
  • Accepted : 2024.06.03
  • Published : 2024.06.28

Abstract

River mining, the extraction of sand and gravel from riverbeds, is rising at an alarming rate to keep pace with the increasing demand for construction materials worldwide. The far-reaching deleterious effects of river mining include the lowering of water levels, the augmentation of turbidity, and the erosion of riverbanks, i.e., the disruption of water flow and alteration of river morphology. Aggregates demand, geolocation, and the economy of Bangladesh accelerated illegal extraction. However, limited research has been carried out in this region, despite the severe impact on aquatic and terrestrial ecosystems. To address the corresponding consequences and direct the scope for further research, it is required to evaluate existing studies of other countries having similarities in river morphology, climate, economy, and other related parameters. In this respect, based on previous studies, the effects of sand extraction are particularly prominent in India, having 54 cross-boundary rivers with Bangladesh. The geological profile of numerous rivers in the past decades has been altered due to natural aggregate mining in the Indian subcontinent. Hence, this study focused on relevant research in this region. However, the existing research only focuses on the regional portion of the aforementioned international rivers, which lacks proper assessments of these rivers, taking into account especially the mining effects. Moreover, several global rivers that have similarities with Bangladeshi rivers, considering different parameters, are also included in this study. The findings of this article underline the pressing need for more efficacious measures to address the adverse effects of river mining and safeguard ecosystems and communities globally, especially in the Indian subcontinent, where the situation is particularly vulnerable. For this reason, targeting the aforementioned region, this review highlights the global evidence in assessing the future effects of river mining and the need for further research in this field.

Keywords

References

  1. Abdulazeez, A. (2016). A Review on the Impact of River and Inland Sand Mining on Nigerian River Basins. A Phd Thesis Submitted at Federal University Dutsinma, Katsina State Nigeria.
  2. Alvarado-Villalon, F., Harrison, D.J. and Steadman, E.J. (2003). Alluvial mining of aggregates in Costa Rica.
  3. Arun, L.K. (1999). Patterns and processes of fish assemblage in Periyar Lake-valley system of Southern Western Ghats. KFRI Research Report, Kerala Forest Research Institute, Peechi, Kerala, 142pp.
  4. Ashraf, M.A., Maah, M.J., Yusoff, I., Wajid, A. and Mahmood, K. (2011). Sand mining effects, causes and concerns: A case study from Bestari Jaya, Selangor, Peninsular Malaysia. Scientific Research and Essays, v.6(6), p.1216-1231. doi: 10.5897/SRE10.690
  5. Ayyam, V., Palanivel, S. and Chandrakasan, S. (2019). Coastal ecosystems of the Tropics-adaptive management. Springer.
  6. Bari, E. and Haque, S.E. (2022). Legal and Illicit Sand Mining Practice in Bangladesh: Exploring Supply Chain and Its Value. Journal of Illicit Economies and Development, 4(1). doi: 10.31389/jied.149
  7. Barman, B., Kumar, B. and Sarma, A.K. (2019). Impact of sand mining on alluvial channel flow characteristics. Ecological Engineering, v.135, p.36-44. doi: 10.1016/j.ecoleng.2019.05.013
  8. Bhattacharya, R., Dolui, G. and Das Chatterjee, N. (2019). Effect of instream sand mining on hydraulic variables of bedload transport and channel planform: an alluvial stream in South Bengal basin, India. Environmental Earth Sciences, v.78, p.1-24. doi: 10.1007/s12665-019-8267-3
  9. Byrnes, M.R. and Hiland, M.W. (1995). Large-scale sediment transport patterns on the continental shelf and influence on shoreline response: St. Andrew Sound, Georgia to Nassau Sound, Florida, USA. Marine Geology, v.126(1-4), p.19-43. doi: 10.1016/0025-3227(95)00064-6
  10. Cao, Z., Duan, H., Feng, L., Ma, R. and Xue, K. (2017). Climate-and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sensing of Environment, v.192, p.98-113.
  11. Collins, B. and Dunne, T. (1990). Fluvial geomorphology and river-gravel mining: a guide for planners, case studies included (Vol. 98). California Department of Conservation, Division of Mines and Geology.
  12. County, L. (1992). Lake County aggregate resource management plan. Lake County Planning Department. Resource Management Division, Lakeport, California. Draft.
  13. Cowx, I.G. and Welcomme, R.L. (1998). Rehabilitation of rivers for fish: a study undertaken by the European Inland Fisheries Advisory Commission of FAO. Food & Agriculture Org.
  14. Damodaran, K.T. and Balakrishnan, P. (2018). Saline Water Intrusion into the Coastal Aquifers of the Periyar River Basin, Central Kerala, India. Urban Ecology, Water Quality and Climate Change, p.367-387. doi: 10.1007/978-3-319-74494-0_28
  15. Department of Economic and Social Affairs/United Nations Statistics Division (2018). United Nations 2018 Comtrade database. https://comtrade.un.org/.
  16. Eslami, S., Hoekstra, P., Nguyen Trung, N., Ahmed Kantoush, S., Van Binh, D., Duc Dung, D., Tran Quang, T. and van der Vegt, M. (2019). Tidal amplification and salt intrusion in the Mekong Delta driven by anthropogenic sediment starvation. Scientific Reports, v.9(1), 18746. https://doi.org/10.1038/s41598-019-55018-9
  17. Gavriletea, M.D. (2017). Environmental impacts of sand exploitation. Analysis of sand market. Sustainability, v.9(7), 1118. doi: 10.3390/su9071118
  18. Geology, California. D. of M. and, & Goldman, H.B. (1964). Sand and Gravel in California-an Inventory of Deposits, PT. B: Central California. California. Division of Mines and Geology.
  19. Harrison, D.J., Fidgett, S., Scott, P.W., MacFarlane, M., Mitchell, P., Eyre, J.M. and Weeks, J.M. (2005). Sustainable river mining of aggregates in developing countries. Geological Society, London, Special Publications, v.250(1), p.35-45. doi: 10.1144/GSL.SP.2005.250.01.05
  20. Harvey, M.D. and Schumm, S.A. (1987). Response of Dry Creek, California to land use change, gravel mining and dam closure. IAHS-AISH Publication, v.165, p.451-460.
  21. Herrling, B. (1982). Artificial groundwater recharge in Quaternary gravel aquifers in the foreland of the Alps.
  22. Hill, L. and Kleynhans, C.J. (1999). Preliminary Guidance document for Authorisation and Licensing of Sand Mining/Gravel Extraction, in terms of Impacts on Instream and Riparian Habitats. Institute for Water Quality Studies.
  23. Islam, M.R., Begum, S.F., Yamaguchi, Y. and Ogawa, K. (1999). The Ganges and Brahmaputra rivers in Bangladesh: basin denudation and sedimentation. Hydrological Processes, v.13(17), p.2907-2923. doi: 10.1002/(SICI)1099-1085(19991215)13:17%3C2907::AIDHYP906%3E3.0.CO;2-E
  24. Islam, N. (1992). Indo-Bangladesh common rivers: The impact on Bangladesh. Contemporary South Asia, v.1(2), p.203-225. doi: 10.1080/09584939208719682
  25. Jose, M.K., Shantanu, K.Y. and Venkatesh, B. (2014). A study of effect of sand mining on riverine environment. 19th International Conference on Hydraulics, Water Resources, Coastal and Environmental Engineering HYDRO, 18-20.
  26. Kondolf, G.M. (1994). Geomorphic and environmental effects of instream gravel mining. Landscape and Urban Planning, v.28(2-3), p.225-243. doi: 10.1016/0169-2046(94)90010-8
  27. Kurup, B.M., Radhakrishnan, K.V and Manojkumar, T.G. (2004). Biodiversity status of fishes inhabiting rivers of Kerala (S. India) with special reference to endemism, threats and conservation measures. Proceedings of LARS2. 2nd Large Rivers Symposium. Mekong River Commission and Food and Agricultural Organization, 163-182.
  28. Lach, J. and Wyzga, B. (2002). Channel incision and flow increase of the upper Wisloka River, southern Poland, subsequent to the reafforestation of its catchment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, v.27(4), p.445-462. http://dx.doi.org/10.1002/esp.329
  29. Loc, H.H., Van Binh, D., Park, E., Shrestha, S., Dung, T.D., Son, V.H., Truc, N.H.T., Mai, N.P. and Seijger, C. (2021a). Intensifying saline water intrusion and drought in the Mekong Delta: From physical evidence to policy outlooks. Science of the Total Environment, v.757, 143919. doi: 10.1016/j.scitotenv.2020.143919
  30. Loc, H.H., Van Binh, D., Park, E., Shrestha, S., Dung, T.D., Son, V.H., Truc, N.H.T., Mai, N.P. and Seijger, C. (2021b). Intensifying saline water intrusion and drought in the Mekong Delta: From physical evidence to policy outlooks. Science of the Total Environment, v.757, 143919. doi: 10.1016/j.scitotenv.2020.143919
  31. Lu, X.X., Zhang, S.R., Xie, S.P. and Ma, P.K. (2007). Rapid channel incision of the lower Pearl River (China) since the 1990s as a consequence of sediment depletion. Hydrology and Earth System Sciences, v.11(6), p.1897-1906. doi: 10.5194/hess-11-1897-2007
  32. Matlock, W.G. (1965). The effect of silt-laden water on infiltration in alluvial channels. The University of Arizona.
  33. Milliman, J.D. and Meade, R.H. (1983). World-wide delivery of river sediment to the oceans. The Journal of Geology, v.91(1), p.1-21. doi: 10.2307/30060512
  34. Newell, R.C., Hitchcock, D.R. and Seiderer, L.J. (1999). Organic enrichment associated with outwash from marine aggregates dredging: a probable explanation for surface sheens and enhanced benthic production in the vicinity of dredging operations. Marine Pollution Bulletin, v.38(9), p.809-818. doi: 10.1016/S0025-326X(99)00045-4
  35. Padmalal, D., Maya, K., Padmalal, D. and Maya, K. (2014). Sand mining: the world scenario. Sand Mining: Environmental Impacts and Selected Case Studies, 57-80. http://dx.doi.org/10.1007/978-94-017-9144-1_5
  36. Padmalal, D., Maya, K., Sreebha, S. and Sreeja, R. (2008). Environmental effects of river sand mining: a case from the river catchments of Vembanad lake, Southwest coast of India. Environmental Geology, v.54, p.879-889. http://dx.doi.org/10.1007/s00254-007-0870-z
  37. Peduzzi, P. (2014). Sand, rarer than one thinks. Environmental Development, v.11(208-218), 682.
  38. Petit, F., Poinsart, D. and Bravard, J.-P. (1996). Channel incision, gravel mining and bedload transport in the Rhone river upstream of Lyon, France ("canal de Miribel"). Catena, v.26(3-4), p.209-226. doi: 10.1016/0341-8162(95)00047-X
  39. Piyadasa, R.U.K. (2011). River sand mining and associated environmental problems in Sri Lanka. Sediment Problems and Sediment Management in Asian River Basins, p.148-153.
  40. Rabbani, M.G. and Panday, P.K. (2022). Sand Extraction and Its Impact on the Livelihood of Rural People of Bangladesh: Evidence from Brahmaputra River. International Journal of Research and Innovation in Social Science, v.6(5), p.801-807.
  41. Rahman, M.M., Hasan, M.S., Eusufzai, M.K. and Rahman, M.M. (2021). Impacts of dredging on fluvial geomorphology in the Jamuna river, Bangladesh. Journal of Geoscience and Environment Protection, v.9(6), p.1-20. doi: 10.4236/gep.2021.96001
  42. Rege, A. (2016). Not biting the dust: using a tripartite model of organized crime to examine India's Sand Mafia. International Journal of Comparative and Applied Criminal Justice, v.40(2), p.101-121. doi: 10.1080/01924036.2015.1082486
  43. Rinaldi, M. (2003). Recent channel adjustments in alluvial rivers of Tuscany, Central Italy. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, v.28(6), p.587-608. http://dx.doi.org/10.1002/esp.464
  44. Rinaldi, M., Wyzga, B. and Surian, N. (2005). Sediment mining in alluvial channels: physical effects and management perspectives. River Research and Applications, v.21(7), p.805-828. doi: 10.1002/rra.884
  45. Sandecki, M. (1989). Aggregate mining in river systems. California Geology, v.42(4), p.88-94.
  46. Santhosh, K.G., Subhani, S.M. and Bahurudeen, A. (2021). Cleaner production of concrete by using industrial by-products as fine aggregate: A sustainable solution to excessive river sand mining. Journal of Building Engineering, 42, 102415. doi: 10.1016/j.jobe.2021.102415
  47. Sear, D.A. and Archer, D. (1998). Effects of Gravel Extraction on the Stability of Gravelbed Rivers: a Case Study from the Wooler Water, Northumberland, UK.
  48. Shields, F.D., Knight, S.S. and Cooper, C.M. (1994). Effects of channel incision on base flow stream habitats and fishes. Environmental Management, v.18, p.43-57. doi: 10.1007/BF02393749
  49. Sood, A. and Mathukumalli, B.K.P. (2011). Managing international river basins: reviewing India-Bangladesh transboundary water issues. Intl. J. River Basin Management, v.9(1), p.43-52. doi: 10.1080/15715124.2011.553832
  50. Sreebha, S. and Padmalal, D. (2011a). Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: a case study. Environmental Management, v.47, p.130-140. doi: 10.1007/s00267-010-9571-6
  51. Sreebha, S. and Padmalal, D. (2011b). Environmental impact assessment of sand mining from the small catchment rivers in the Southwestern Coast of India: A case study. Environmental Management, v.47(1), p.130-140. https://doi.org/10.1007/S00267-010-9571-6
  52. Sunilkumar, R. (2002). Impact of sand mining on benthic fauna: a case study from Achankovil river-an overview. Catholicate College, Pathanamthitta District, Kerala, 38.
  53. Supriharyono, S. (2004). Effects of sand mining on coral reefs in Riau Islands. Journal of Coastal Zone Management, v.7(2), p.89-100.
  54. Surian, N. and Rinaldi, M. (2003). Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology, v.50(4), p.307-326. doi: 10.1016/S0169-555X(02)00219-2
  55. Surian, N., Rinaldi, M. and Pellegrini, L. (2011). Channel adjustments and implications for river management and restoration. Geografia Fisica e Dinamica Quaternaria, v.34(1), p.145-152.
  56. Wu, G., de Leeuw, J., Skidmore, A.K., Prins, H.H.T. and Liu, Y. (2007). Concurrent monitoring of vessels and water turbidity enhances the strength of evidence in remotely sensed dredging impact assessment. Water Research, v.41(15), p.3271-3280. doi: 10.1016/j.watres.2007.05.018
  57. Wyzga, B. (2007). 20 A review on channel incision in the Polish Carpathian rivers during the 20th century. Developments in Earth Surface Processes, v.11, p.525-553. doi: 10.1016/S0928-2025(07)11142-1
  58. Young, R. and Griffith, A. (2009). Documenting the global impacts of beach sand mining. EGU General Assembly Conference Abstracts, 11593.
  59. Zou, W., Tolonen, K.T., Zhu, G., Qin, B., Zhang, Y., Cao, Z., Peng, K., Cai, Y. and Gong, Z. (2019). Catastrophic effects of sand mining on macroinvertebrates in a large shallow lake with implications for management. Science of the Total Environment, v.695, 133706. doi: 10.1016/j.scitotenv.2019.133706