과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. 2020R1C1C1A01005396).
참고문헌
- I. Han, and J. B. Black, "Incorporating haptic feedback in simulation for learning physics," Computers & Education, vol. 57, no. 4, pp. 2281-2290, 2011. DOI: 10.1016/j.compedu.2011.06.012.
- U. von Zadow, S. Buron, T. Harms, F. Behringer, K. Sostmann, and R. Dachsel, "SimMed: combining simulation and interactive tabletops for medical education," in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1469-1478, 2013. DOI: 10.1145/2470654.2466196.
- C. H. Mejia, P. Germano, S. C. Echeverri, and Y. Perriard, "Artificial Neural Networks for Impact Position Detection in Haptic Surfaces," in 2019 IEEE International Ultrasonics Symposium (IUS), Aticle ID: 19242551, 2019. DOI: 10.1109/ULTSYM.2019.8925548.
- S. Park, D. Kim, and N. C. Park, "Rendering high-fidelity vibrotactile feedback on a plate via optimization of actuator driving signals," in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 261, no. 6, pp. 548-555, 2020. DOI: 10.1109/ACCESS.2023.3247606.
- C. Hudin, J. Lozada, and V. Hayward, "Localized tactile feedback on a transparent surface through time-reversal wave focusing." IEEE transactions on haptics, vol. 8, no. 2 pp. 188-198, 2015. DOI: 10.1109/TOH.2015.2411267.
- T. W. Mason, "Design and testing of an electrostatic actuator with dual-electrodes for large touch display applications," Ph.D. dissertation, Miami University, 2021.
- Rajkumar, S. Mohan, et al. "Modeling and Experimental Evaluation of Haptic Localization Using Electrostatic Vibration Actuators." IEEE Access 11 (2023): 18582-18589.
- J. Kennedy, and R. Eberhart. "Particle swarm optimization." in Proceedings of ICNN'95-International Conference on Neural Networks. vol. 4, pp. 1942-1928, 1995. DOI: 10.1109/ICNN.1995. 488968.
- W. Dongshu, D. Tan, and L. Liu. "Particle swarm optimization algorithm: an overview," Soft computing vol. 22, pp. 387-408, 2018. DOI: 10.1007/s00500-016-2474-6.
- T. M. Shami, A. A. El-Saleh; M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and S. Mirjalili, "Particle Swarm Optimization: A Comprehensive Survey," vol. 10, pp. 10031-10061, 2022. DOI: 10.1109/ACCESS.2022.3142859.
- J. Tian, M. Hou, H. Bian, and J. Li, "Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems," Complex & Intelligent Systems, vol. 9, pp. 3887-3935, 2023. DOI: 10.1007/s40747-022-00910-7.
- C. Basdogan, F, Giraud, V. Levesque, S. Choi, "A review of surface haptics: Enabling tactile effects on touch surfaces," IEEE transactions on haptics, vol. 13 no. 3, pp. 450-470, 2020. DOI: 10.1109/TOH.2020.2990712.
- D. N. Arnold, A. L. Madureira, and S. Zhang, "On the range of applicability of the Reissner-Mindlin and Kirchhoff-Love plate bending models," Journal of elasticity and the physical science of solids, vol. 67, no. 3, pp. 171-185, 2002. DOI: 10.1023/A:1024986427134.
- D. Kropiowska, L. Mikulski, and P. Szeptynski, "Optimal design of a Kirchhoff-Love plate of variable thickness by application of the minimum principle," Structural and Multidisciplinary Optimization, vol. 59, no. 5, pp. 1581-1598, 2019. DOI: 10.1007/s00158-018-2143-3.
- R. K. Mohanty, "A fourth-order finite difference method for the general one-dimensional nonlinear biharmonic problems of first kind," Journal of computational and applied mathematics, vol. 114, no. 2, pp. 275-290, 2000. DOI: 10.1007/s00158-018-2143-3.