DOI QR코드

DOI QR Code

Relationship between Foot Morphology and Biomechanical Variables of the Lower Extremity Joints during Vertical Jump

수직점프 시 발의 형태학적 특징과 하지관절의 운동역학적 변인과의 관계

  • Seong Hun Park (Graduate School of Korea National Sport University) ;
  • Sang-Kyoon Park (Motion Innovation Center, Korea National Sport University)
  • Received : 2024.03.07
  • Accepted : 2024.04.12
  • Published : 2024.06.30

Abstract

Objective: The purpose of this study was to measure the morphological characteristics of the foot and biomechanical variables of the lower extremity joints during vertical jump and investigate the relationship between foot morphology and biomechanics of vertical jump. Method: 24 men in their 20s (age: 22.42 ± 1.41 yrs, height: 173.37 ± 4.61 cm, weight: 72.02 ± 6.21 kg, foot length: 251.70 ± 8.68 mm) participated in the study. Morphological characteristics of the foot included the length of the first toe, the length of the second toe, and the horizontal length from the center of ankle joint to the achilles tendon (Plantar Flexion Moment Arm [PFMA]). Biomechanical variables were measured for plantar flexor strength of the ankle joint and peak angular velocity, moment, and power of the lower extremity joint during vertical jump. Results: There was a significant correlation between the length of the first toe and plantar flexion strength at 30°/s [r=.440, p=.016], the angular velocity of the metatarsophalangeal [MTP] joint [r=-.369, p=.038] while significant correlations between PFMA and the angular velocities of the knee joint [r=.369, p=.038] and ankle joint [r=.420, p=.021] were found. There were also significant correlations between the length of the first toe and the maximum moment of the hip joint [r=.379, p=.034], and the length of the second toe and the power of the hip joint [r=-.391, p=.029]. Finally, significant correlations between PFMA and the power of the ankle joint [r=.424, p=.019] and MTP joint [r=.367, p=.039] were found. Conclusion: Based on the results of this study, the length of the toe and PFMA would be related to the function of the lower extremity joint. Therefore, this should be considered when designing the functional structure of a shoe. Furthermore, this relationship can be applied to intensive training for the plantar flexors and toe flexors to improve power in athletic performance.

Keywords

Acknowledgement

This study excerpted from Seong Hun Park's master thesis at Korea National Sport University.

References

  1. Baxter, J. R. & Piazza, S. J. (2014). Plantar flexor moment arm and muscle volume predict torque-generating capacity in young men. Journal of Applied Physiology, 116(5), 538-544.
  2. Baxter, J. R., Novack, T. A., Van Werkhoven, H., Pennell, D. R. & Piazza, S. J. (2012). Ankle joint mechanics and foot proportions differ between human sprinters and non-sprinters. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 2018-2024.
  3. Chen, L. H., Chang, C. C., Wang, M. J. & Tsao, L. (2018). Comparison of foot shape between recreational sprinters and non-habitual exercisers using 3D scanning data. International Journal of Industrial Ergonomics, 68, 337-343.
  4. Elliot, B. & Ackland, T. (1981). Biomechanical effects of fatigue on 10,000 meter running technique. Research Quarterly for Exercise and Sport, 52(2), 160-166.
  5. Farris, D. J., Lichtwark, G. A., Brown, N. A. & Cresswell, A. G. (2016). The role of human ankle plantar flexor muscletendon interaction and architecture in maximal vertical jumping examined in vivo. Journal of Experimental Biology, 219(4), 528-534.
  6. Fukunaga, T., Roy, R. R., Shellock, F. G., Hodgson, J. A., Day, M. K., Lee, P. L. & Edgerton, V. R. (1992). Physiological crosssectional area of human leg muscles based on magnetic resonance imaging. Journal of Orthopaedic Research, 10(6), 926-934.
  7. Kim, T. S. & Lee, Y. J. (2007). Three Dimension Angle Change of the Trunk to the Muscular Endurance during a Prolonged Running. Korean Journal of Sport Biomechanics, 17(2), 61-73.
  8. Kim, Y. W., Seo, J. S. & Han, D. W. (2012). Effect of Joint Kinetics and Coordination on the Within-Individual Differences in Maximum Vertical Jump. Korean Journal of Sport Biomechanics, 22(3), 305-314.
  9. Krell, J. B. & Stefanyshyn, D. J. (2006). The relationship between extension of the metatarsophalangeal joint and sprint time for 100 m Olympic athletes. Journal of Sports Sciences, 24(2), 175-180.
  10. Lee, S. S. & Piazza, S. J. (2009). Built for speed: musculoskeletal structure and sprinting ability. Journal of Experimental Biology, 212(22), 3700-3707.
  11. Lee, Y. S. & Ryu, J. (2019). The Relationship between Anthropometric Parameters of the Foot and Kinetic Variables during Running. Korean Journal of Sport Biomechanics, 29(3), 173-183.
  12. Lindstedt, S. L. (2016). Skeletal muscle tissue in movement and health: positives and negatives. Journal of Experimental Biology, 219(2), 183-188.
  13. Loturco, I., D'Angelo, R. A., Fernandes, V., Gil, S., Kobal, R., Abad, C. C. C. & Nakamura, F. Y. (2015). Relationship between sprint ability and loaded/unloaded jump tests in elite sprinters. The Journal of Strength & Conditioning Research, 29(3), 758-764.
  14. Marcote-Pequeno, R., Garcia-Ramos, A., Cuadrado-Penafiel, V., Gonzalez-Hernandez, J. M., Gomez, M. A. & JimenezReyes, P. (2019). Association between the force-velocity profile and performance variables obtained in jumping and sprinting in elite female soccer players. International Journal of Sports Physiology and Performance, 14(2), 209-215.
  15. Moore, K. L., Dalley, A. F. & Agur, A. M. (2013). Clinically Oriented Anatomy. Lippincott Williams & Wilkins.
  16. Peter, A., Hegyi, A., Finni, T. & Cronin, N. J. (2017). In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds. Scandinavian Journal of Medicine & Science in Sports, 27(12), 1716-1723.
  17. Rannama, I., Port, K., Bazanov, B. & Pedak, K. (2015). Sprint cycling performance and asymmetry. Journal of Human Sport and Exercise, 10(1), S248-S258.
  18. Rea, L. M. & Parker, R. A. (2014). Designing and Conducting Survey Research: A Comprehensive Guide. Fourth Edition. John Wiley & Sons, Inc.
  19. Standring, S. (2009). Gray's Anatomy: The Anatomical Basis of Clinical Practice, Expert Consult. Aubrey Durkin.
  20. Stefanyshyn, D. J. & Nigg, B. M. (1997). Mechanical energy contribution of the metatarsophalangeal joint to running and sprinting. Journal of Biomechanics, 30(11-12), 1081-1085.
  21. Tanaka, T., Suga, T., Otsuka, M., Misaki, J., Miyake, Y., Kudo, S. & Isaka, T. (2017). Relationship between the length of the forefoot bones and performance in male sprinters. Scandinavian Journal of Medicine & Science in Sports, 27(12), 1673-1680.
  22. Taunton, J. E., Ryan, M. B., Clement, D. B., McKenzie, D. C., LloydSmith, D. R. & Zumbo, B. D. (2002). A retrospective casecontrol analysis of 2002 running injuries. British Journal of Sports Medicine, 36(2), 95-101.
  23. Ueno, H., Suga, T., Takao, K., Tanaka, T., Misaki, J., Miyake, Y. & Isaka, T. (2018). Association between forefoot bone length and performance in male endurance runners. International Journal of Sports Medicine, 39(04), 275-281.
  24. Vanezis, A. & Lees, A. (2005). A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics, 48(11-14), 1594-1603.
  25. Ward, S. R., Eng, C. M., Smallwood, L. H. & Lieber, R. L. (2009). Are current measurements of lower extremity muscle architecture accurate?. Clinical Orthopaedics and Related Research, 467(4), 1074-1082.