DOI QR코드

DOI QR Code

Effects of 2-Ethylhexyl Diphenyl Phosphate on the Development and Growth Hormone Endocrine System in Zebrafish Larvae

2-Ethylhexyl Diphenyl Phosphate가 제브라피쉬 치어의 발달과 성장호르몬 내분비계에 미치는 영향

  • Chaeun Park (Department of Environmental Health, Graduate School, Yongin University) ;
  • Da Yeong Lee (Department of Occupational and Environmental Health, Yongin University) ;
  • Kyunghee Ji (Department of Environmental Health, Graduate School, Yongin University)
  • 박채운 (용인대학교 일반대학원 환경보건학과) ;
  • 이다영 (용인대학교 산업환경보건학과) ;
  • 지경희 (용인대학교 일반대학원 환경보건학과)
  • Received : 2024.05.18
  • Accepted : 2024.06.12
  • Published : 2024.06.30

Abstract

Background: 2-Ethylhexyl diphenyl phosphate (EHDPP) is widely used as a flame-retardant plasticizer in the production of polyvinyl chloride, adhesives, and food packaging. This chemical has been frequently detected in water, sediment, and indoor environments, and its lipophilicity raises concerns about bioaccumulation. Objectives: In this study, the effects of EHDPP on the development, behavioral changes, and growth hormone (GH) endocrine system of zebrafish larvae were investigated. Methods: Fertilized embryos were exposed to various concentrations (control, solvent control, 0.07, 0.7, 7, 70, and 700 ㎍/L) of EHDPP for 96 h. Developmental toxicity endpoints were observed daily. Behavioral changes under light-dark-light conditions and changes in hormones and genes related to GH/insulin-like growth factors (IGFs) axis were determined. Results: Significant decreases in survival, body length and moving distance were observed in zebrafish larvae exposed to 70 and 700 ㎍/L EHDPP. The concentrations of GH and IGF-1 were significantly decreased in zebrafish larvae exposed to 70 and 700 ㎍/L EHDPP. This change was well supported by changes in the transcription of genes involved in GH, IGF, IGF receptors, and IGF binding proteins. Conclusions: Our observations showed that exposure to 70 and 700 ㎍/L EHDPP could disrupt the feedback circuits of the GH/IGFs axis, ultimately leading to developmental toxicity, hypoactivity, and mortality.

Keywords

Acknowledgement

본 연구는 한국연구재단(RS-2023-00251751)의 지원을 받아 수행되었으며, 이에 감사드립니다.

References

  1. Xu S, Yu Y, Qin Z, Wang C, Hu Q, Jin Y. Effects of 2-ethylhexyl diphenyl phosphate exposure on the glucolipid metabolism and cardiac developmental toxicity in larval zebrafish based on transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol. 2023; 267: 109578. 
  2. Greaves AK, Letcher RJ. A review of organophosphate esters in the environment from biological effects to distribution and fate. Bull Environ Contam Toxicol. 2017; 98(1): 2-7. 
  3. Zhou Y, Liao H, Yin S, Wang P, Ye X, Zhang J. Aryl-, halogenatedand alkyl- organophosphate esters induced oxidative stress, endoplasmic reticulum stress and NLRP3 inflammasome activation in HepG2 cells. Environ Pollut. 2023; 316(Pt 1): 120559. 
  4. Australian Government. 2-ethylhexyl phosphates: evaluation statement, 15 April 2024. Sydney: Department of Health and Aged Care, Australian Industrial Chemicals Introduction Scheme; 2024. 
  5. Lee S, Cho H, Choi W, Moon H. Organophosphate flame retardants (OPFRs) in water and sediment: occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea. Mar Pollut Bull. 2018; 130: 105-112. 
  6. Liu Y, Song N, Guo R, Xu H, Zhang Q, Han Z, et al. Occurrence and partitioning behavior of organophosphate esters in surface water and sediment of a shallow Chinese freshwater lake (Taihu Lake): implication for eco-toxicity risk. Chemosphere. 2018; 202: 255-263. 
  7. Xing L, Zhang Q, Sun X, Zhu H, Zhang S, Xu H. Occurrence, distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater Lake, China. Sci Total Environ. 2018; 636: 632-640. 
  8. Lv J, Guo C, Luo Y, Liu Y, Deng Y, Sun S, et al. Spatial distribution, receptor modelling and risk assessment of organophosphate esters in surface water from the largest freshwater lake in China. Ecotoxicol Environ Saf. 2022; 238: 113618. 
  9. Wang X, Zhu L, Zhong W, Yang L. Partition and source identification of organophosphate esters in the water and sediment of Taihu Lake, China. J Hazard Mater. 2018; 360: 43-50. 
  10. Wang X, Liu J, Yin Y. Development of an ultra-high-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water. J Chromatogr A. 2011; 1218(38): 6705-6711. 
  11. Niu Z, Zhang Z, Li J, He J, Zhang Y. Threats of organophosphate esters (OPEs) in surface water to ecological system in Haihe River of China based on species sensitivity distribution model and assessment factor model. Environ Sci Pollut Res Int. 2019; 26(11): 10854-10866. 
  12. Xing L, Tao M, Zhang Q, Kong M, Sun J, Jia S, et al. Occurrence, spatial distribution and risk assessment of organophosphate esters in surface water from the lower Yangtze River Basin. Sci Total Environ. 2020; 734: 139380. 
  13. Cristale J, Garcia Vazquez A, Barata C, Lacorte S. Priority and emerging flame retardants in rivers: occurrence in water and sediment, Daphnia magna toxicity and risk assessment. Environ Int. 2013; 59: 232-243. 
  14. Nantaba F, Palm WU, Wasswa J, Bouwman H, Kylin H, Kummerer K. Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda. Chemosphere. 2021; 262: 127716. 
  15. Kim UJ, Kannan K. Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap water, and rainwater: implications for human exposure. Environ Sci Technol. 2018; 52(10): 5625-5633. 
  16. Matsukami H, Tue NM, Suzuki G, Someya M, Tuyen LH, Viet PH, et al. Flame retardant emission from e-waste recycling operation in northern Vietnam: environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs. Sci Total Environ. 2015; 514: 492-499. 
  17. Li Y, Kang Q, Chen R, He J, Liu L, Wang L, et al. 2-ethylhexyl diphenyl phosphate and its hydroxylated metabolites are anti-androgenic and cause adverse reproductive outcomes in male Japanese medaka (Oryzias latipes). Environ Sci Technol. 2020; 54(14): 8919-8925. 
  18. Li Y, Ma H, Chen R, Zhang H, Nakanishi T, Hu J. Maternal transfer of 2-ethylhexyl diphenyl phosphate leads to developmental toxicity possibly by blocking the retinoic acid receptor and retinoic X receptor in Japanese medaka (Oryzias latipes). Environ Sci Technol. 2021; 55(8): 5056-5064. 
  19. Yang R, Wang X, Wang J, Chen P, Liu Q, Zhong W, et al. Insights into the sex-dependent reproductive toxicity of 2-ethylhexyl diphenyl phosphate on zebrafish (Danio rerio). Environ Int. 2022; 158: 106928. 
  20. Organisation for Economic Co-operation and Development. Test no. 236: fish embryo acute toxicity (FET) test. Available: https://www.oecd-ilibrary.org/environment/test-no-236-fish-embryoacute-toxicity-fet-test_9789264203709-en [accessed 14 May 2024]. 
  21. Fuentes EN, Valdes JA, Molina A, Bjornsson BT. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system. Gen Comp Endocrinol. 2013; 192: 136-148. 
  22. Zhu Y, Song D, Tran NT, Nguyen N. The effects of the members of growth hormone family knockdown in zebrafish development. Gen Comp Endocrinol. 2007; 150(3): 395-404. 
  23. Reindl KM, Kittilson JD, Bergan HE, Sheridan MA. Growth hormone-stimulated insulin-like growth factor-1 expression in rainbow trout (Oncorhynchus mykiss) hepatocytes is mediated by ERK, PI3K-AKT, and JAK-STAT. Am J Physiol Regul Integr Comp Physiol. 2011; 301(1): R236-R243. 
  24. Moriyama S, Ayson FG, Kawauchi H. Growth regulation by insulin-like growth factor-I in fish. Biosci Biotechnol Biochem. 2000; 64(8): 1553-1562. 
  25. Dang Y, Wang F, Liu C. Real-time PCR array to study the effects of chemicals on the growth hormone/insulin-like growth factors (GH/IGFs) axis of zebrafish embryos/larvae. Chemosphere. 2018; 207: 365-376. 
  26. Zeng X, Sun H, Huang Y, Liu J, Yu L, Liu C, et al. Effects of environmentally relevant concentrations of tris (2-butoxyethyl) phosphate on growth and transcription of genes involved in the GH/IGF and HPT axes in zebrafish (Danio rerio). Chemosphere. 2018; 212: 376-384. 
  27. Segner H. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Physiol C Toxicol Pharmacol. 2009; 149(2): 187-195. 
  28. Hu F, Zhao Y, Yuan Y, Yin L, Dong F, Zhang W, et al. Effects of environmentally relevant concentrations of tris (2-chloroethyl) phosphate (TCEP) on early life stages of zebrafish (Danio rerio). Environ Toxicol Pharmacol. 2021; 83: 103600. 
  29. Yun K, Jeon H, Kho Y, Ji K. Potential adverse outcome pathway of neurodevelopmental toxicity, inflammatory response, and oxidative stress induction mediated by three alkyl organophosphate flame retardants in zebrafish larvae. Chemosphere. 2024; 356: 141901. 
  30. Shu Y, Yuan J, Hogstrand C, Xue Z, Wang X, Liu C, et al. Bioaccumulation and thyroid endcrione disruption of 2-ethylhexyl diphenyl phosphate at environmental concentration in zebrafish larvae. Aquat Toxicol. 2024; 267: 106815. 
  31. Di Prinzio CM, Botta PE, Barriga EH, Rios EA, Reyes AE, Arranz SE. Growth hormone receptors in zebrafish (Danio rerio): adult and embryonic expression patterns. Gene Expr Patterns. 2010; 10(4-5): 214-225. 
  32. Wang L, Yan R, Yang Q, Li H, Zhang J, Shimoda Y, et al. Role of GH/IGF axis in arsenite-induced developmental toxicity in zebrafish embryos. Ecotoxicol Environ Saf. 2020; 201: 110820. 
  33. Zou S, Kamei H, Modi Z, Duan C. Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development. PLoS One. 2009; 4(9): e7026. 
  34. Zhang C, Lu L, Li Y, Wang X, Zhou J, Liu Y, et al. IGF binding protein-6 expression in vascular endothelial cells is induced by hypoxia and plays a negative role in tumor angiogenesis. Int J Cancer. 2012; 130(9): 2003-2012. 
  35. Basnet RM, Zizioli D, Taweedet S, Finazzi D, Memo M. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines. 2019; 7(1): 23. 
  36. Alzualde A, Behl M, Sipes NS, Hsieh JH, Alday A, Tice RR, et al. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance. Neurotoxicol Teratol. 2018; 70: 40-50. 
  37. Shi Q, Wang M, Shi F, Yang L, Guo Y, Feng C, et al. Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. Aquat Toxicol. 2018; 203: 80-87. 
  38. Xia M, Wang X, Xu J, Qian Q, Gao M, Wang H. Tris (1-chloro2-propyl) phosphate exposure to zebrafish causes neurodevelopmental toxicity and abnormal locomotor behavior. Sci Total Environ. 2021; 758: 143694. 
  39. Oliveri AN, Bailey JM, Levin ED. Developmental exposure to organophosphate flame retardants causes behavioral effects in larval and adult zebrafish. Neurotoxicol Teratol. 2015; 52(Pt B): 220-227. 
  40. Shi Q, Yang H, Zheng Y, Zheng N, Lei L, Li X, et al. Neurotoxicity of an emerging organophosphorus flame retardant, resorcinol bis(diphenyl phosphate), in zebrafish larvae. Chemosphere. 2023; 334: 138944.