DOI QR코드

DOI QR Code

Evaluation of Single and Binary Mixture Toxicity of Organic UV-Filters Using H295R Cells

H295R 세포를 활용한 유기 UV-Filters의 단일 및 혼합독성 평가

  • Bomee Lee (Institute of Natural Sciences, Yongin University) ;
  • Inhye Lee (Institute of Natural Sciences, Yongin University) ;
  • Kyunghee Ji (Department of Occupational and Environmental Health, Yongin University)
  • 이봄이 (용인대학교 자연과학연구소) ;
  • 이인혜 (용인대학교 자연과학연구소) ;
  • 지경희 (용인대학교 산업환경보건학과)
  • Received : 2024.05.13
  • Accepted : 2024.06.18
  • Published : 2024.06.30

Abstract

Background: Organic ultraviolet (UV) filters are widely used in sunscreen products and have been identified as an emerging contaminant. Organic UV filters co-exist with multiple components, but their mixture toxicity remains largely unknown. Objectives: We investigated the toxicity of single and binary mixtures of commonly used UV-filters using the human adrenocarcinoma (H295R) cell line. Methods: After exposure to non-cytotoxic concentrations of avobenzone (AVO), homosalate (HS), octisalate (OS), octinoxate (OMC), and octocrylene (OC), the levels of testosterone (T) and 17β-estradiol (E2) were measured. The median effective concentration (EC50) values for the E2 of the individual substances were used to determine the mixture effect of four binary combinations: OMC+AVB, OMC+HS, OMC+OS, and OMC+OC. The synergistic, additive, and antagonistic effects of the mixture were determined by calculating toxic units (TU). To examine the mechanism of mixture toxicity, eight genes involved in steroidogenesis were analyzed using the real-time polymerase chain reaction. Results: The significant increase in E2 in H295R cells exposed to AVO, HS, OS, OMC, and OC suggest an estrogenic effect of the tested UV-filters. A significant decrease in T was observed in cells exposed to HS and OS. EC50 values for E2 increase were 105 nM for AVO, 110 nM for HS, 120 nM for OS, 55 nM for OMC, and 80 nM for OC. Both binary mixtures consisting of OMC+HS and OMC+OS have synergistic effects. Conclusions: Our results showed that five types of UV-filter substances increase E2 in H295R cells. We examined the mixture toxicity in terms of increased estrogenicity and confirmed that E2 significantly increased when OMC was mixed with a salicylate-based UV-filters. These findings highlight the importance of determining the impact of UV filter mixtures.

Keywords

Acknowledgement

본 연구는 한국연구재단(RS-2023-00251751)의 지원을 받아 수행되었으며, 이에 감사드립니다.

References

  1. Maipas S, Nicolopoulou-Stamati P. Sun lotion chemicals as endocrine disruptors. Hormones (Athens). 2015; 14(1): 32-46.
  2. Chen L, Wang J, Wu X, Coulthard CT, Qian Y, Chen C, et al. Boosting the effectiveness of UV filters and sunscreen formulations using photostable, non-toxic inorganic platelets. Chem Commun (Camb). 2024; 60(8): 1039-1042.
  3. Schneider SL, Lim HW. A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol Photoimmunol Photomed. 2019; 35(6): 442-446.
  4. Kwon B, Choi K. Occurrence of major organic UV filters in aquatic environments and their endocrine disruption potentials: a mini-review. Integr Environ Assess Manag. 2021; 17(5): 940-950.
  5. Damiani E, Baschong W, Greci L. UV-filter combinations under UV-A exposure: concomitant quantification of over-all spectral stability and molecular integrity. J Photochem Photobiol B. 2007; 87(2): 95-104.
  6. Labille J, Slomberg D, Catalano R, Robert S, Apers-Tremelo ML, Boudenne JL, et al. Assessing UV filter inputs into beach waters during recreational activity: a field study of three French Mediterranean beaches from consumer survey to water analysis. Sci Total Environ. 2020; 706: 136010.
  7. Cadena-Aizaga MI, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodriguez JJ. Occurrence and environmental hazard of organic UV filters in seawater and wastewater from Gran Canaria Island (Canary Islands, Spain). Environ Pollut. 2022; 300: 118843.
  8. Downs CA, Diaz-Cruz MS, White WT, Rice M, Jim L, Punihaole C, et al. Beach showers as sources of contamination for sunscreen pollution in marine protected areas and areas of intensive beach tourism in Hawaii, USA. J Hazard Mater. 2022; 438: 129546.
  9. Fenni F, Sunyer-Caldu A, Ben Mansour H, Diaz-Cruz MS. Contaminants of emerging concern in marine areas: first evidence of UV filters and paraben preservatives in seawater and sediment on the eastern coast of Tunisia. Environ Pollut. 2022; 309: 119749.
  10. Tsui MMP, Leung HW, Wai TC, Yamashita N, Taniyasu S, Liu W, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries. Water Res. 2014; 67: 55-65.
  11. Tsui MMP, Chen L, He T, Wang Q, Hu C, Lam JCW, et al. Organic ultraviolet (UV) filters in the South China sea coastal region: environmental occurrence, toxicological effects and risk assessment. Ecotoxicol Environ Saf. 2019; 181: 26-33.
  12. Mitchelmore CL, He K, Gonsior M, Hain E, Heyes A, Clark C, et al. Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii. Sci Total Environ. 2019; 670: 398-410.
  13. He K, Hain E, Timm A, Tarnowski M, Blaney L. Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay. Sci Total Environ. 2019; 650(Pt 2): 3101-3109.
  14. Yang H, Lu G, Yan Z, Liu J, Dong H, Bao X, et al. Residues, bioaccumulation, and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion. J Hazard Mater. 2020; 391: 122245.
  15. Lee S, Ka Y, Lee B, Lee I, Seo YE, Shin H, et al. Single and mixture toxicity evaluation of avobenzone and homosalate to male zebrafish and H295R cells. Chemosphere. 2023; 343: 140271.
  16. Ka Y, Ji K. Waterborne exposure to avobenzone and octinoxate induces thyroid endocrine disruption in wild-type and thrαa-/- zebrafish larvae. Ecotoxicology. 2022; 31(6): 948-955.
  17. Nataraj B, Maharajan K, Hemalatha D, Rangasamy B, Arul N, Ramesh M. Comparative toxicity of UV-filter Octyl methoxycinnamate and its photoproducts on zebrafish development. Sci Total Environ. 2020; 718: 134546.
  18. Gayathri M, Sutha J, Mohanthi S, Ramesh M, Poopal RK. Ecotoxicological evaluation of the UV-filter octocrylene (OC) in embryonic zebrafish (Danio rerio): developmental, biochemical and cellular biomarkers. Comp Biochem Physiol C Toxicol Pharmacol. 2023; 271: 109688.
  19. US Food and Drug Administration. Sunscreen drug products for over-the-counter human use. Available: https://www.federalregister.gov/documents/2019/02/26/2019-03019/sunscreen-drugproducts-for-over-the-counter-human-use [accessed 12 May 2024].
  20. Onyango DO, Selman BG, Rose JL, Ellison CA, Nash JF. Comparison between endocrine activity assessed using ToxCast/Tox21 database and human plasma concentration of sunscreen active ingredients/UV filters. Toxicol Sci. 2023; 196(1): 25-37.
  21. Klopcic I, Dolenc MS. Endocrine activity of AVB, 2MR, BHA, and their mixtures. Toxicol Sci. 2017; 156(1): 240-251.
  22. Bruhns T, Sanchez-Giron Barba C, Konig L, Timm S, Fisch K, Sokolova IM. Combined effects of organic and mineral UV-filters on the lugworm Arenicola marina. Chemosphere. 2024; 358: 142184.
  23. Gracia T, Hilscherova K, Jones PD, Newsted JL, Zhang X, Hecker M, et al. The H295R system for evaluation of endocrine-disrupting effects. Ecotoxicol Environ Saf. 2006; 65(3): 293-305.
  24. Hilscherova K, Jones PD, Gracia T, Newsted JL, Zhang X, Sanderson JT, et al. Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using realtime PCR. Toxicol Sci. 2004; 81(1): 78-89.
  25. Ji K, Choi K, Lee S, Park S, Khim JS, Jo EH, et al. Effects of sulfathiazole, oxytetracycline and chlortetracycline on steroidogenesis in the human adrenocarcinoma (H295R) cell line and freshwater fish Oryzias latipes. J Hazard Mater. 2010; 182(1-3): 494-502.
  26. Organisation for Economic Co-operation and Development. Test guideline No. 456 H295R steroidogenesis assay. Available: https://www.oecd.org/env/test-no-456-h295r-steroidogenesis-assay-9789264122642-en.htm [accessed 12 May 2024].
  27. Haggard DE, Karmaus AL, Martin MT, Judson RS, Setzer RW, Paul Friedman K. High-throughput H295R steroidogenesis assay: utility as an alternative and a statistical approach to characterize effects on steroidogenesis. Toxicol Sci. 2018; 162(2): 509-534.
  28. Ding K, Lu L, Wang J, Wang J, Zhou M, Zheng C, et al. In vitro and in silico investigations of the binary-mixture toxicity of phthalate esters and cadmium (II) to Vibrio qinghaiensis sp.-Q67. Sci Total Environ. 2017; 580: 1078-1084.
  29. Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, et al. CERAPP: collaborative Estrogen receptor activity prediction project. Environ Health Perspect. 2016; 124(7): 1023-1033.
  30. Guan LL, Lim HW, Mohammad TF. Sunscreens and photoaging: a review of current literature. Am J Clin Dermatol. 2021; 22(6): 819-828.
  31. Schreurs R, Lanser P, Seinen W, van der Burg B. Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay. Arch Toxicol. 2002; 76(5-6): 257-261.
  32. Jimenez-Diaz I, Molina-Molina JM, Zafra-Gomez A, Ballesteros O, Navalon A, Real M, et al. Simultaneous determination of the UV-filters benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in human placental tissue by LC-MS/MS. Assessment of their in vitro endocrine activity. J Chromatogr B Analyt Technol Biomed Life Sci. 2013; 936: 80-87.
  33. Schreurs RHMM, Sonneveld E, Jansen JH, Seinen W, van der Burg B. Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays. Toxicol Sci. 2005; 83(2): 264-272.
  34. Kunz PY, Fent K. Multiple hormonal activities of UV filters and comparison of in vivo and in vitro estrogenic activity of ethyl4-aminobenzoate in fish. Aquat Toxicol. 2006; 79(4): 305-324.
  35. Kunz PY, Galicia HF, Fent K. Comparison of in vitro and in vivo estrogenic activity of UV filters in fish. Toxicol Sci. 2006; 90(2): 349-361.
  36. Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W. In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect. 2001; 109(3): 239-244.
  37. Strajhar P, Tonoli D, Jeanneret F, Imhof RM, Malagnino V, Patt M, et al. Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids. Toxicology. 2017; 381: 51-63.
  38. Matsumoto H, Adachi S, Suzuki Y. [Estrogenic activity of ultraviolet absorbers and the related compounds]. Yakugaku Zasshi. 2005; 125(8): 643-652. Japanese.
  39. Jager MC, Patt M, Gonzalez-Ruiz V, Boccard J, Wey T, Winter DV, et al. Extended steroid profiling in H295R cells provides deeper insight into chemical-induced disturbances of steroidogenesis: exemplified by prochloraz and anabolic steroids. Mol Cell Endocrinol. 2023; 570: 111929.
  40. Pandey AV, Miller WL. Regulation of 17,20 lyase activity by cytochrome b5 and by serine phosphorylation of P450c17. J Biol Chem. 2005; 280(14): 13265-13271.