DOI QR코드

DOI QR Code

아질산칼슘 방청제를 사용한 시멘트 경화체 내의 염소이온 거동 특성

Characteristics of Chloride Ion Behavior in an Cement Matrix Using Calcium Nitrite Inhibitor

  • 신민철 (한양대학교 건설환경시스템공학과) ;
  • 안기용 (한양대학교 건설환경공학과)
  • Min-Cheol Shin (Dept. of Civil & Environmental System Eng., Hanyang University) ;
  • Ki-Yong Ann (Dept. of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2024.05.18
  • 심사 : 2024.05.28
  • 발행 : 2024.06.30

초록

본 연구는 염소이온이 침투한 시멘트 모르타르에서의 아질산칼슘(Ca(NO2)2) 방청제의 방청 효과에 대한 실험적 연구이다. 이를 위하여 아질산칼슘 방청제를 함유한 시멘트 모르타르에 대하여 내부식성과 염화물 이동에 대한 실험을 실시하였다. 그 결과 아질산칼슘 방청제의 사용량을 증가하면 할수록 철근부식에 대한 염화물 임계 농도값이 증가한 반면, 염소이온의 이동속도는 빨라지는 것을 확인하였다. 그러나 아질산칼슘 방청제를 사용한 시멘트 모르타르의 경우 염소이온의 이동속도가 빨라서 부식 발생시간을 단언하는 것은 어려움이 있었다. 그러나 철근부식에 영향을 미치지 않을 아질산칼슘의 사용량은 본 연구의 범위에서는 시멘트 중량 대비 2.0~3.0% 수준의 결과를 나타내었다.

The present study concerns the inhibition of Calcium Nitrite Inhibitor(Ca(NO2)2) in mortar contaminated by chloride ions. Thus, the corrosion resistance and chloride transport were measured for the mortar containing calcium nitrite inhibitor. As a result, an increase in the dosage of calcium nitrite inhibitor resulted in an increase in the chloride threshold concentration for reinforcement corrosion, while the rate of chloride transport was accelerated. However, the calcium nitrite inhibitor could not guarantee the time to corrosion, due to the increased mobility of chlorides. To ensure the passivity of steel, the dosage of calcium nitrite inhibitor must exceed a certain dosage, ranging from 2.0~3.0 % by cement weight.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020R1A2C3012248).

참고문헌

  1. Ann, K.Y., Buenfeld, N.R. (2007). The effect of calcium nitrite on the chloride-induced corrosion of steel in concrete, Magazine of Concrete Research, 59(9), 689-697. https://doi.org/10.1680/macr.2007.59.9.689
  2. ASTM C1202-22 (2022). Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM International, West Conshohocken, PA, USA.
  3. Berke, N.S., Weil, T.G. (1994). World Wide Review of Corrosion Inhibitors in Concrete, in: Malhotra, V.M. (Eds.), Advances in Concrete Technology, CANMET Ottawa, Canada, 999-1022.
  4. Bolzoni, F., Brenna, A., Ormellese, M. (2022). Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete, Cement and Concrete Research, 154, 106719.
  5. Craig, R.J., Wood, L.E. (1970). Effectiveness of corrosion inhibitors and their influence on the physical properties of Portland cement mortars, Highway Research Record, 328, 77-88.
  6. Gaidis, J.M. and Rosenberg, A.M. (1979). The mechanism of nitrite inhibition of chloride attack on reinforcing steel in alkaline aqueous environments, Materials Performance(MP), 18(11), 45-48.
  7. Hope, B.B., Ip, A.K.C. (1989). Corrosion inhibitors for use in concrete, ACI Materials Journal, 86(6), 602-608. https://doi.org/10.14359/2270
  8. Lewis, J.I.M., Manson, C.E., Brereton, D. (1956). Sodium benzoate in concrete, Civil Engineering, 51(602), 881-882.
  9. Mennucci, M.M., Banczek, E.P., Rodrigues, P.R.P., Costa, I. (2009). Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution, Cement and Concrete Composites, 31(6), 418-424. https://doi.org/10.1016/j.cemconcomp.2009.04.005
  10. Ormellese, M., Berra, M., Bolzoni, F.A.B.I.O., Pastore, T. (2006). Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures, Cement and Concrete Research, 36(3), 536-547. https://doi.org/10.1016/j.cemconres.2005.11.007
  11. Treadaway, K.W., Russell, A.D. (1968). The inhibition of the corrosion of steel in concrete, Highways and Public Works, 36, 19-21.
  12. Zheng, H., Li, W., Ma, F., Kong, Q. (2014). The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH)2 solutions, Cement and Concrete Research, 55, 102-108. https://doi.org/10.1016/j.cemconres.2013.10.005