DOI QR코드

DOI QR Code

Associations between Anemia and Glomerular Filtration Rate and Albuminuria in Korean Adults by Metabolic Syndrome Status: Analysis of KNHNES V-3 Data

대한민국 성인의 대사증후군 유무에 따른 빈혈과 사구체 여과율 및 알부민뇨의 연관성: 국민건강영양조사 V-3 분석

  • Hyun YOON (Department of Clinical Laboratory Science, Wonkwang Health Science University)
  • 윤현 (원광보건대학교 임상병리과)
  • Received : 2024.04.16
  • Accepted : 2024.04.29
  • Published : 2024.06.30

Abstract

The present study was conducted to explore relationships between anemia and estimated glomerular filtration rate (eGFR) and urine microalbumin/creatinine ratio (uACR) in Korean adults with or without metabolic syndrome (MetS). The data of 4,943 adults aged ≥20 years who participated in KNHNES V-3 (2012) were analyzed. In the non-MetS group, the odds ratio (OR) for anemia of those with a decreased eGFR {eGFR<60 mL/min/1.73 m2, 3.85 (95% confidence interval [CI], 2.03~7.30)} was significant as was the OR of those with decreased eGFR plus elevated uACR (eGFR<60 mL/min/1.73 m2 and uACR≥30 mg/g, 5.81 [95% CI, 2.60~13.02]). In the MetS group, ORs for anemia for those with an elevated uACR (2.18 [95% CI, 1.11~4.27]), a decreased eGFR (3.74 [95% CI, 1.11~12.55]), or a decreased eGFR plus an elevated uACR (16.79 [95% CI, 5.93~47.57]) were significant. In conclusion, in non-MetS, anemia was associated with a low eGFR, whereas in MetS, anemia was associated with a low eGFR and an elevated uACR. In addition, the OR for anemia was greatly increased when eGFR was diminished and uACR was elevated regardless of MetS and MetS status.

본 연구는 대한민국 성인을 대상으로 대사증후군(metabolic syndrome, MetS) 유·무에 따른 빈혈과 추정 사구체여과율(estimated glomerular filtration rate, eGFR) 및 요 미세 알부민/크레아티닌 비율(urine microalbumin/creatinine ratio, uACR)의 관련성을 평가하기 위하여 2012년 국민건강 영양조사(KNHNES V-3) 자료를 활용하여 20세 이상 성인 4,943명을 대상으로 데이터를 분석하였다. 본 연구에서 몇 가지 중요한 발견이 있었다. 첫째, 비 MetS 그룹에서는 정상군(eGFR≥60 mL/min/1.73 m2 및 uACR<30 mg/g)의 빈혈(남성, 헤모글로빈[hemoglobin, Hb]<13 g/dL; 여성, Hb<12 g/dL)의 발생률에 비하여 감소된 eGFR 그룹(eGFR<60 mL/min/1.73 m2; odds ratio [OR], 3.65; 95% confidence interval [CI], 1.90~7.00) 및 감소된 eGFR+증가된 uACR 그룹(eGFR<60 mL/min/1.73 m2 및 uACR≥30 mg/g, OR, 6.00; 95% CI, 2.61~13.80)의 빈혈 발생률이 높았다. 둘째, MetS 그룹에서는 정상군에 비하여 증가된 uACR 그룹(OR, 2.18; 95% CI, 1.11~4.27), 감소된 eGFR 그룹(OR, 3.73; 95% CI, 1.09~12.75) 및 감소된 eGFR+증가된 uACR 그룹(OR, 18.17; 95% CI, 6.16~53.63)의 빈혈 발생률이 높았다. 결론적으로, 비 MetS 그룹에서는 빈혈은 eGFR의 감소와 관련이 있었고, MetS 그룹에서는 빈혈은 eGFR 감소 및 uACR 증가와 관련이 있었다. 추가적으로, 비 MetS 그룹과 MetS 그룹 모두에서 eGFR의 감소 및 uACR의 증가가 동시에 나타날 때 빈혈의 발생률이 크게 증가하였다.

Keywords

Acknowledgement

This paper was supported by Wonkwang Health Science University in 2024.

References

  1. Inker LA, Coresh J, Levey AS, Tonelli M, Muntner P. Estimated GFR, albuminuria, and complications of chronic kidney disease. J Am Soc Nephrol. 2011;22:2322-2331. https://doi.org/10.1681/ASN.2010111181 
  2. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020;98(4S): S1-S115. https://doi.org/10.1016/j.kint.2020.06.019 
  3. Kuo IC, Lin HY, Niu SW, Lee JJ, Chiu YW, Hung CC, et al. Anemia modifies the prognostic value of glycated hemoglobin in patients with diabetic chronic kidney disease. PLoS One. 2018;13:e0199378. https://doi.org/10.1371/journal.pone.0199378 
  4. Kubo K, Okamura T, Sugiyama D, Hisamatsu T, Hirata A, Kadota A, et al. Effect of chronic kidney disease or anemia or both on cardiovascular mortality in a 25-year follow-up study of Japanese general population (from NIPPON DATA90). Am J Cardiol. 2022;184:1-6. https://doi.org/10.1016/j.amjcard.2022.08.027 
  5. Bajaj S, Makkar BM, Abichandani VK, Talwalkar PG, Saboo B, Srikanta SS, et al. Management of anemia in patients with diabetic kidney disease: a consensus statement. Indian J Endocrinol Metab. 2016;20:268-281. https://doi.org/10.4103/2230-8210.176348 
  6. Roshan B, Stanton RC. A story of microalbuminuria and diabetic nephropathy. J Nephropathol. 2013;2:234-240. https://doi.org/10.12860/JNP.2013.37 
  7. Portoles J, Martin L, Broseta JJ, Cases A. Anemia in chronic kidney disease: from pathophysiology and current treatments, to future agents. Front Med (Lausanne). 2021;8:642296. https://doi.org/10.3389/fmed.2021.642296 
  8. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80:17-28. https://doi.org/10.1038/ki.2010.483 
  9. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63:713-735. https://doi.org/10.1053/j.ajkd.2014.01.416 
  10. Adetunji OR, Mani H, Olujohungbe A, Abraham KA, Gill GV. 'Microalbuminuric anaemia'--the relationship between haemoglobin levels and albuminuria in diabetes. Diabetes Res Clin Pract. 2009;85:179-182. https://doi.org/10.1016/j.diabres.2009.04.028 
  11. Jain RB. Perfluoroalkyl acids and their isomers, diabetes, anemia, and albuminuria: variabilities with deteriorating kidney function. Ecotoxicol Environ Saf. 2021;208:111625. https://doi.org/10.1016/j.ecoenv.2020.111625 
  12. Yang JQ, Ran P, Chen JY, He YT, Li LW, Tan N, et al. Development of contrast-induced acute kidney injury after elective contrast media exposure in patients with type 2 diabetes mellitus: effect of albuminuria. PLoS One. 2014;9:e106454. https://doi.org/10.1371/journal.pone.0106454 
  13. Okada H, Hasegawa G, Tanaka M, Osaka T, Shiotsu Y, Narumiya H, et al. Association between hemoglobin concentration and the progression or development of albuminuria in diabetic kidney disease. PLoS One. 2015;10:e0129192. https://doi.org/10.1371/journal.pone.0129192 
  14. Yoon H, Go JS, Kim KU, Lee KW. The association of serum ferritin and metabolic syndrome and metabolic syndrome score in Korean adults. Korean J Clin Lab Sci. 2016;48:287-295. https://doi.org/10.15324/kjcls.2016.48.4.287 
  15. Yoon H, Jeong DK, Lee KS, Kim HS, Moon AE, Park J. Relationship between metabolic syndrome and metabolic syndrome score and beta cell function by gender in Korean populations with obesity. Endocr J. 2016;63:785-793. https://doi.org/10.1507/endocrj.EJ16-0106 
  16. Seong JM, Lee JH, Gi MY, Son YH, Moon AE, Park CE, et al. Gender difference in the association of chronic kidney disease with visceral adiposity index and lipid accumulation product index in Korean adults: Korean National Health and Nutrition Examination Survey. Int Urol Nephrol. 2021;53:1417-1425. https://doi.org/10.1007/s11255-020-02735-0 
  17. Park J, Ryu SY, Han MA, Choi SW. The association of vitamin D with estimated glomerular filtration rate and albuminuria: 5th Korean National Health and Nutritional Examination Survey 2011-2012. J Ren Nutr. 2016;26:360-366. https://doi.org/10.1053/j.jrn.2016.07.003 
  18. World Health Organization. Iron deficiency anaemia: assessment, prevention and control. A guide for programme managers. World Health Organization: 2001. 
  19. McClellan W, Aronoff SL, Bolton WK, Hood S, Lorber DL, Tang KL, et al. The prevalence of anemia in patients with chronic kidney disease. Curr Med Res Opin. 2004;20:1501-1510. https://doi.org/10.1185/030079904X2763 
  20. Ryu SR, Park SK, Jung JY, Kim YH, Oh YK, Yoo TH, et al. The prevalence and management of anemia in chronic kidney disease patients: result from the KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD). J Korean Med Sci. 2017;32:249-256. https://doi.org/10.3346/jkms.2017.32.2.249 
  21. Guedes M, Muenz DG, Zee J, Bieber B, Stengel B, Massy ZA, et al. Serum biomarkers of iron stores are associated with increased risk of all-cause mortality and cardiovascular events in nondialysis CKD patients, with or without anemia. J Am Soc Nephrol. 2021;32:2020-2030. https://doi.org/10.1681/ASN.2020101531 
  22. Jankowski J, Floege J, Fliser D, Bohm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143:1157-1172. https://doi.org/10.1161/CIRCULATIONAHA.120.050686 
  23. Hanna RM, Streja E, Kalantar-Zadeh K. Burden of anemia in chronic kidney disease: beyond erythropoietin. Adv Ther. 2021;38:52-75. https://doi.org/10.1007/s12325-020-01524-6 
  24. Gouva C, Nikolopoulos P, Ioannidis JP, Siamopoulos KC. Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney Int. 2004;66:753-760. https://doi.org/10.1111/j.1523-1755.2004.00797.x 
  25. Srinivasan R, Fredy IC, Chandrashekar S, Saravanan J, Mohanta GP, Manna PK. Assessment of erythropoietin for treatment of anemia in chronic kidney failure- ESRD patients. Biomed Pharmacother. 2016;82:44-48. https://doi.org/10.1016/j.biopha.2016.04.041 
  26. Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23:1631-1634. https://doi.org/10.1681/ASN.2011111078 
  27. Han JS, Lee MJ, Park KS, Han SH, Yoo TH, Oh KH, et al. Albuminuria as a risk factor for anemia in chronic kidney disease: result from the KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD). PLoS One. 2015;10:e0139747. https://doi.org/10.1371/journal.pone.0139747 
  28. Ritz E, Haxsen V. Diabetic nephropathy and anaemia. Eur J Clin Invest. 2005;35(Suppl 3):66-74. https://doi.org/10.1111/j.1365-2362.2005.01544.x 
  29. Mutter S, Valo E, Aittomaki V, Nybo K, Raivonen L, Thorn LM, et al. Urinary metabolite profiling and risk of progression of diabetic nephropathy in 2670 individuals with type 1 diabetes. Diabetologia. 2022;65:140-149. https://doi.org/10.1007/s00125-021-05584-3 
  30. Maric C, Hall JE. Obesity, metabolic syndrome and diabetic nephropathy. Contrib Nephrol. 2011;170:28-35. https://doi.org/10.1159/000324941 
  31. Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 2008;4:444-452. https://doi.org/10.1038/ncpendmet0894 
  32. Lim AKh. Diabetic nephropathy - complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361-381. https://doi.org/10.2147/IJNRD.S40172 
  33. Duran-Perez EG, Almeda-Valdes P, Cuevas-Ramos D, Campos-Barrera E, Munoz-Hernandez L, Gomez-Perez FJ. Treatment of metabolic syndrome slows progression of diabetic nephropathy. Metab Syndr Relat Disord. 2011;9:483-489. https://doi.org/10.1089/met.2011.0056 
  34. Prinsen BHCMT, Velden MGMS, Kaysen GA, Straver HWHC, Rijn HJMV, Stellaard F, et al. Transferrin synthesis is increased in nephrotic patients insufficiently to replace urinary losses. J Am Soc Nephrol. 2001;12:1017-1025. https://doi.org/10.1681/ASN.V1251017 
  35. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595-1607. https://doi.org/10.2337/diab.37.12.1595 
  36. Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: an update. Front Pharmacol. 2022;13:1038073. https://doi.org/10.3389/fphar.2022.1038073 
  37. Zhang Y, Zhu X, Huang X, Wei X, Zhao D, Jiang L, et al. Advances in understanding the effects of erythropoietin on renal fibrosis. Front Med (Lausanne). 2020;7:47. https://doi.org/10.3389/fmed.2020.00047 
  38. McGill JB, Haller H, Roy-Chaudhury P, Cherrington A, Wada T, Wanner C, et al. Making an impact on kidney disease in people with type 2 diabetes: the importance of screening for albuminuria. BMJ Open Diabetes Res Care. 2022;10:e002806. https://doi.org/10.1136/bmjdrc-2022-002806 
  39. Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of diabetic kidney disease: current and future. Diabetes Metab J. 2021;45:11-26. https://doi.org/10.4093/dmj.2020.0217