DOI QR코드

DOI QR Code

DNA Mutation Pattern of gyrA and gyrB Genes according to the SCCmec Subtype of Quinolone-resistant Staphylococcus aureus Isolates from Blood Culture

혈액배양에서 분리된 Fluoroquinolone계 약제 내성 황색포도알균의 SCCmec 아형에 따른 gyrA와 gyrB 유전자에서의 DNA 돌연변이 양상

  • Inwon HWANG (Department of Public Health, The Graduate School of Public Health and Welfare Konyang University) ;
  • Sang-Ha KIM (Department of Laboratory Medicine, Konyang University Hospital) ;
  • Taewon JUNG (Department of Laboratory Medicine, Samsung Medical Center) ;
  • Young-Kwon KIM (Department of Public Health, The Graduate School of Public Health and Welfare Konyang University) ;
  • Sunghyun KIM (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • 황인원 (건양대학교 보건복지대학원 보건학과) ;
  • 김상하 (건양대학교병원 진단검사의학과) ;
  • 정태원 (삼성서울병원 진단검사의학과) ;
  • 김영권 (건양대학교 보건복지대학원 보건학과) ;
  • 김성현 (부산가톨릭대학교 보건과학대학 임상병리학과)
  • Received : 2024.03.19
  • Accepted : 2024.06.03
  • Published : 2024.06.30

Abstract

The emergence and spread of Staphylococcus aureus, which is resistant to quinolone antibacterial agents, has made it difficult to treat infectious diseases. Accordingly, this study examined the molecular epidemiological characteristics of quinolone-resistant S. aureus (QRSA) to obtain helpful data for treatment. Mutations in mecA and SCCmec typing, gyrA, and gyrB genes were investigated for QRSA strains isolated from the blood culture specimens at a general hospital in Daejeon Metropolitan City. The ciprofloxacin-resistant strains in SCCmec typing were II (44 strains, 73%), IVa (five strains, 8%), III, and V (one strain, 2%); the non-typeable strains (11 strains, 18%), and levofloxacin (LVX) and moxifloxacin (MXF) strains were II (44 strains, 73%), IVa (five strains, 8%), III, and V (one strain, 2%); the non-typeable strains were 10 (17%). In both gyrA and gyrB regions, there were 58 mutations, or 96.7%. In LVX, there were 56 mutations or 93.3%, and in MXF, there were 57 mutations or 95%. Twelve mutations, six mutations each in gyrA and gyrB, were identified for the QRSA strain. The resistance rate for the quinolone antibiotics of QRSA studied was approximately 98%, and 12 mutations, six each in gyrA and gyrB, were identified in the QRSA strain. Therefore, the rational use of antibiotics needs to be improved.

플루오로퀴놀론(fluoroquinolone, FQ) 항균제 내성을 갖는 황색포도알균(Staphylococcus aureus)의 출현 및 확산으로 감염증 치료에 어려움을 겪고 있다. 이 퀴놀론 내성 황색포도알균(quinolone resistant S. aureus, QRSA) 에 대한 분자역학적 특성을 조사하여 치료에 도움을 주는 자료를 만들고자하였다. 대전광역시 소재 1개 종합병원에서 혈액배양 검체에서 분리된 QRSA 균주를 대상으로 mecA와 SCCmec 유전자형 분석에 따른, gyrA, gyrB 유전자의 돌연변이를 조사하였다. Ciprofloxacin 내성균주는 SCCmec typing에서 II형이 44개로 73%, IVa형이 5개로 8%, III와 V형이 1개로 2%, nontypeable 균주가 11개로 18%, levofloxacin, moxifloxacin은 II형이 44개로 73%, IVa형이 5개로 8%, III와 V형이 1개로 2%, non typeable 균주가 10개로 17%의 결과를 보였다. gyrA와 gyrB 영역 모두에서 58개로 96.7%, levofloxacin은 56개로 93.3%, moxifloxacin에는 57개로 95%를 나타냈다. QRSA 균주에 대한 gyrA와 gyrB의 돌연변이는 각각 6개씩 12개의 돌연변이가 확인되었다. 연구 대상 QRSA의 FQ 항균제의 내성률은 약 98%를 나타냈고, QRSA 균주에 대한 gyrA와 gyrB의 돌연변이는 각각 6개씩 12개의 돌연변이가 확인되었다.

Keywords

Acknowledgement

This article is a condensed form of the first author's master's thesis.

References

  1. Ahn BK, Min KC, Cho SH, Lee DG, Kim A, Lee SH. Isolation of lactic acid bacteria with anti-MRSA bacteriocin activity and characterization of the bacteriocin product. Microbiol Biotechnol Lett. 2021;49:131-137. https://doi.org/10.48022/mbl.2012.12008
  2. Moosavian M, Shahin M, Navidifar T, Torabipour M. Typing of staphylococcal cassette chromosome mec encoding methicillin resistance in Staphylococcus aureus isolates in Ahvaz, Iran. New Microbes New Infect. 2017;21:90-94. https://doi.org/10.1016/j.nmni.2017.11.006
  3. Chongtrakool P, Ito T, Ma XX, Kondo Y, Trakulsomboon S, Tiensasitorn C, et al. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother. 2006;50:1001-1012. https://doi.org/10.1128/AAC.50.3.1001-1012. 2006
  4. Horii T, Suzuki Y, Monji A, Morita M, Muramatsu H, Kondo Y, et al. Detection of mutations in quinolone resistance-determining regions in levofloxacin- and methicillin-resistant Staphylococcus aureus: effects of the mutations on fluoroquinolone MICs. Diagn Microbiol Infect Dis. 2003;46:139-145. https://doi.org/10.1016/s0732-8893(03)00037-3
  5. Brakstad OG, Aasbakk K, Maeland JA. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol. 1992;30:1654-1660. https://doi.org/10.1128/jcm.30.7.1654-1660.1992
  6. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22:438-445. https://doi.org/10.1016/j.tim.2014.04.007
  7. Jalal S, Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist. 1998;4:257-261. https://doi.org/10.1089/mdr.1998.4.257
  8. Sung JY, Cho HH, Kwon KC, Koo SH. Chromosomal mutations in oprD, gyrA, and parC in carbapenem resistant Pseudomonas aeruginosa. Korean J Clin Microbiol. 2011;14:131-137. https://doi.org/10.5145/KJCM.2011.14.4.131
  9. Choo EJ. Antimicrobial therapy for methicillin-resistant Staphylococcus aureus. J Korean Med Assoc. 2018;61:207-213. https://doi.org/10.5124/jkma.2018.61.3.207
  10. Oliveira DC, de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46:2155-2161. https://doi.org/10.1128/AAC.46.7.2155-2161.2002
  11. Kim SH, Park SB, Park H, Kim JS, Kim J, Lee J, et al. Molecular subtyping of methicillin-resistant Staphylococcus aureus isolated from patients' nasal cavity. Korean J Clin Lab Sci. 2020;52:128-135. https://doi.org/10.15324/kjcls.2020.52.2.128
  12. Nathania I, Nainggolan IM, Yasmon A, Nusatia ACM, Tjoa E, Gunardi WD, et al. Hotspots sequences of gyrA, gyrB, parC, and parE genes encoded for fluoroquinolones resistance from local Salmonella Typhi strains in Jakarta. BMC Microbiol. 2022;22:250. https://doi.org/10.1186/s12866-022-02666-z
  13. Trong HN, Prunier AL, Leclercq R. Hypermutable and fluoroquinolone-resistant clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49:2098-2101. https://doi.org/10.1128/AAC.49.5.2098-2101.2005
  14. Huh HJ, Kim ES, Chae SL. Evaluation of the BD GeneOhm MRSA real-time PCR assay for detection of nasal colonization by MRSA. Korean J Clin Microbiol. 2011;14:74-78. https://doi.org/10.5145/KJCM.2011.14.2.74
  15. Hashem RA, Yassin AS, Zedan HH, Amin MA. Fluoroquinolone resistant mechanisms in methicillin-resistant Staphylococcus aureus clinical isolates in Cairo, Egypt. J Infect Dev Ctries. 2013;7:796-803. https://doi.org/10.3855/jidc.3105
  16. Yang T, Pan L, Wu N, Wang L, Liu Z, Kong Y, et al. Antimicrobial resistance in clinical Ureaplasma spp. and Mycoplasma hominis and structural mechanisms underlying quinolone resistance. Antimicrob Agents Chemother. 2020;64:e02560-19. https://doi.org/10.1128/AAC.02560-19
  17. Shaker M, Zaki A, Asser SL, Sayed IE. Trends and predictors of antimicrobial resistance among patients with urinary tract infections at a tertiary hospital facility in Alexandria, Egypt: a retrospective record-based classification and regression tree analysis. BMC Infect Dis. 2024;24:246. https://doi.org/10.1186/s12879-024-09086-6
  18. Hong CK, Kim J, Kim GY. Characteristics of quinolone resistance in multidrug-resistant Acinetobacter baumannii strains isolated from general hospitals. Jundishapur J Microbiol. 2021;14:e115128. https://doi.org/10.5812/jjm.115128
  19. Zhan Q, Xu Y, Wang B, Yu J, Shen X, Liu L, et al. Distribution of fluoroquinolone resistance determinants in Carbapenem-resistant Klebsiella pneumoniae clinical isolates associated with bloodstream infections in China. BMC Microbiol. 2021;21:164. https://doi.org/10.1186/s12866-021-02238-7
  20. Akpaka PE, Roberts R, Monecke S. Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago. J Infect Public Health. 2017;10:316-323. https://doi.org/10.1016/j.jiph.2016.05.010
  21. de Matos PD, de Oliveira TL, Cavalcante FS, Ferreira DC, Iorio NL, Pereira EM, et al. Molecular markers of antimicrobial resistance in methicillin-resistant Staphylococcus aureus SCCmec IV presenting different genetic backgrounds. Microb Drug Resist. 2016;22:700-706. https://doi.org/10.1089/mdr.2015.0255
  22. Sanfilippo CM, Hesje CK, Haas W, Morris TW. Topoisomerase mutations that are associated with high-level resistance to earlier fluoroquinolones in Staphylococcus aureus have less effect on the antibacterial activity of besifloxacin. Chemotherapy. 2011;57:363-371. https://doi.org/10.1159/000330858