DOI QR코드

DOI QR Code

Emerging paradigms in cancer cell plasticity

  • Hyunbin D. Huh (Department of Biochemistry, Brain Korea 21 Project, College of Life Science and Biotechnology, Yonsei University) ;
  • Hyun Woo Park (Department of Biochemistry, Brain Korea 21 Project, College of Life Science and Biotechnology, Yonsei University)
  • 투고 : 2024.01.09
  • 심사 : 2024.04.05
  • 발행 : 2024.06.30

초록

Cancer cells metastasize to distant organs by altering their characteristics within the tumor microenvironment (TME) to effectively overcome challenges during the multistep tumorigenesis. Plasticity endows cancer cell with the capacity to shift between different morphological states to invade, disseminate, and seed metastasis. The epithelial-to-mesenchymal transition (EMT) is a theory derived from tissue biopsy, which explains the acquisition of EMT transcription factors (TFs) that convey mesenchymal features during cancer migration and invasion. On the other hand, adherent-to-suspension transition (AST) is an emerging theory derived from liquid biopsy, which describes the acquisition of hematopoietic features by AST-TFs that reprograms anchorage dependency during the dissemination of circulating tumor cells (CTCs). The induction and plasticity of EMT and AST dynamically reprogram cell-cell interaction and cell-matrix interaction during cancer dissemination and colonization. Here, we review the mechanisms governing cellular plasticity of AST and EMT during the metastatic cascade and discuss therapeutic challenges posed by these two morphological adaptations to provide insights for establishing new therapeutic interventions.

키워드

과제정보

This work was supported by grants from the National Research Foundation of Korea (2020M3F7A1094077, 2020M3F7A1094089, 2021R1A2C1010828, 2020R1A4A1019063, 2018R1C1B6004301) to HWP, and by the Brain Korea 21 FOUR Program to H.D.H.

참고문헌

  1. Mehlen P and Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6, 449-458
  2. Gupta GP and Massague J (2006) Cancer metastasis: building a framework. Cell 127, 679-695
  3. Stuelten CH, Parent CA and Montell DJ (2018) Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 18, 296-312
  4. Reymond N, d'Agua BB and Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13, 858-870
  5. Micalizzi DS, Maheswaran S and Haber DA (2017) A conduit to metastasis: circulating tumor cell biology. Genes Dev 31, 1827-1840
  6. Wirtz D, Konstantopoulos K and Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11, 512-522
  7. Massague J and Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529, 298-306
  8. Perez-Gonzalez A, Bevant K and Blanpain C (2023) Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nat Cancer 4, 1063-1082
  9. Kim OH, Jeon TJ, Shin YK and Lee HJ (2023) Role of extrinsic physical cues in cancer progression. BMB Rep 56, 287-295
  10. Huyghe A, Trajkova A and Lavial F (2024) Cellular plasticity in reprogramming, rejuvenation and tumorigenesis: a pioneer TF perspective. Trends Cell Biol 34, 255-267
  11. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872
  12. Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676
  13. Ambasudhan R, Talantova M, Coleman R et al (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9, 113-118
  14. Ieda M, Fu J, Delgado-Olguin P et al (2011) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375-386
  15. Pereira CF, Fu J, Delgado-Olguin P et al (2013) Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell 13, 205-218
  16. da Silva-Diz V, Lorenzo-Sanz L, Bernat-Peguera A, Lopez-Cerda M and Munoz P (2018) Cancer cell plasticity: impact on tumor progression and therapy response. Semin Cancer Biol 53, 48-58
  17. Nieto MA, Huang RY, Jackson RA and Thiery JP (2016) Emt: 2016. Cell 166, 21-45
  18. Huh HD, Sub Y, Oh J et al (2023) Reprogramming anchorage dependency by adherent-to-suspension transition promotes metastatic dissemination. Mol Cancer 22, 63
  19. Marabitti V, Caruana I and Nazio F (2023) Should I stay or should I go? Spatio-temporal control of cellular anchorage by hematopoietic factors orchestrates tumor metastatic cascade. Mol Cancer 22, 149
  20. Lamouille S, Xu J and Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178-196
  21. Huang Y, Hong W and Wei X (2022) The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 15, 129
  22. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939
  23. Ni T, Li X, Lu N et al (2016) Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol 18, 1221-1232
  24. Krebs AM, Mitschke J, Losada ML et al (2017) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19, 518-529
  25. Sun BO, Fang Y, Li Z, Chen Z and Xiang J (2015) Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression. Biomed Rep 3, 603-610
  26. Hong O, Kang SY, Noh E et al (2022) Aurora kinase A induces migration and invasion by inducing epithelial-to-mesenchymal transition in colon cancer cells. BMB Rep 55, 87-91
  27. Shi X, Luo J, Weigel KJ et al (2021) Cancer-associated fibroblasts facilitate squamous cell carcinoma lung metastasis in mice by providing TGFbeta-mediated cancer stem cell niche. Front Cell Dev Biol 9, 668164
  28. Tsai JH, Donaher JL, Murphy DA, Chau S and Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725-736
  29. Kallergi G, Markomanolaki H, Giannoukaraki V et al (2009) Hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression in circulating tumor cells of breast cancer patients. Breast Cancer Res 11, R84
  30. Chen P and Parks WC (2009) Role of matrix metalloproteinases in epithelial migration. J Cell Biochem 108, 1233-1243
  31. Grzechocinska B, Dabrowski FA, Cyganek A et al (2014) Serum levels and tissue expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinases 2 (TIMP-2) in colorectal cancer patients. Tumour Biol 35, 3793-3802
  32. Dhar M, Lam JN, Walser T, Dubinett SM, Rettig MB and Carlo DD (2018) Functional profiling of circulating tumor cells with an integrated vortex capture and single-cell protease activity assay. Proc Natl Acad Sci U S A 115, 9986-9991
  33. Cao Z, Livas T and Kyprianou N (2016) Anoikis and EMT: lethal "Liaisons" during cancer progression. Crit Rev Oncog 21, 155-168
  34. Williams ED, Gao D, Redfern A and Thompson EW (2019) Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 19, 716-732
  35. Gao J, Zhu Y, Nilsson M and Sundfeldt K (2014) TGF-beta isoforms induce EMT independent migration of ovarian cancer cells. Cancer Cell Int 14, 72
  36. Chung YC, Wei WC, Hung CN et al (2016) Rab11 collaborates E-cadherin to promote collective cell migration and indicates a poor prognosis in colorectal carcinoma. Eur J Clin Invest 46, 1002-1011
  37. Cheung KJ, Gabrielson E, Werb Z and Ewald AJ (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155, 1639-1651
  38. Aceto N, Bardia A, Miyamoto DT et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110-1122
  39. Gkountela S, Castro-Giner F, Szczerba BM et al (2019) Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176, 98-112 e14
  40. Mu Z, Wang C, Ye Z et al (2015) Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer. Breast Cancer Res Treat 154, 563-571
  41. Wang C, Mu Z, Chervoneva I et al (2017) Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer. Breast Cancer Res Treat 161, 83-94
  42. Murlidhar V, Reddy RM, Fouladdel S et al (2017) Poor prognosis indicated by venous circulating tumor cell clusters in early-stage lung cancers. Cancer Res 77, 5194-5206
  43. Krol I, Castro-Giner F, Maurer M et al (2018) Detection of circulating tumour cell clusters in human glioblastoma. Br J Cancer 119, 487-491
  44. Jansson S, Bendahl PO, Larsson AM, Aaltonen KE and Ryden L (2016) Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer 16, 433
  45. Klameth L, Rath B, Hochmaier M et al (2017) Small cell lung cancer: model of circulating tumor cell tumorospheres in chemoresistance. Sci Rep 7, 5337
  46. Fischer KR, Durrans A, Lee S et al (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472-476
  47. Zheng X, Carstens JL, Kim J et al (2015) Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525-530
  48. Seng A and Yankee TM (2017) The role of the ikaros family of transcription factors in regulatory T cell development and function. J Clin Cell Immunol 8, 495
  49. Sellars M, Kastner P and Chan S (2011) Ikaros in B cell development and function. World J Biol Chem 2, 132-139
  50. Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P and Orkin SH (1993) Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362, 722-728
  51. Tamura T, Kurotaki D and Koizumi S (2015) Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol 101, 342-351
  52. Tijchon E, van Emst L, Yuniati L et al (2016) Tumor suppressors BTG1 and BTG2 regulate early mouse B-cell development. Haematologica 101, e272-e276
  53. Dupont S, Morsut L, Aragona M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183
  54. Nardone G, Oliver-De La Cruz J, Vrbsky J et al (2017) YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun 8, 15321
  55. Lee YC, Lin SC, Yu G et al (2022) Prostate tumor-induced stromal reprogramming generates Tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene 41, 757-769
  56. Shin JE, Kim SH, Kong M et al (2023) Targeting FLT3-TAZ signaling to suppress drug resistance in blast phase chronic myeloid leukemia. Mol Cancer 22, 177
  57. Labuschagne CF, Cheung EC, Blagih J, Domart MC and Vousden KH (2019) Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab 30, 720-734 e5
  58. Zheng Y, Miyamoto DT, Wittner BS et al (2017) Expression of beta-globin by cancer cells promotes cell survival during blood-borne dissemination. Nat Commun 8, 14344
  59. Kronke J, Udeshi ND, Narla A et al (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301-305
  60. Lu G, Middleton RE, Sun H et al (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305-309
  61. Bras GFL, Taubenslag KJ and Andl CD (2012) The regulation of cell-cell adhesion during epithelial-mesenchymal transition, motility and tumor progression. Cell Adh Migr 6, 365-373
  62. Huh HD, Sub Y, Oh J et al (2023) Reprogramming anchorage dependency by adherent-to-suspension transition promotes metastatic dissemination. Mol Cancer 22, 63
  63. Yuan Z, Li Y, Zhang S et al (2023) Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 22, 48
  64. Haerinck J, Goossens S and Berx G (2023) The epithelialmesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 24, 590-609
  65. Meyer-Schaller N, Cardner M, Diepenbruck M et al (2019) A hierarchical regulatory landscape during the multiple stages of EMT. Dev Cell 48, 539-553 e6
  66. Jolly MK, Tripathi SC, Jia D et al (2016) Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7, 27067-27084
  67. Yang J, Antin P, Berx G et al (2020) Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 21, 341-352
  68. Pastushenko I, Brisebarre A, Sifrim A et al (2018) Identification of the tumour transition states occurring during EMT. Nature 556, 463-468
  69. Luond F, Sugiyama N, Bill R et al (2021) Distinct contributions of partial and full EMT to breast cancer malignancy. Dev Cell 56, 3203-3221 e11
  70. Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342, 1234850
  71. Hu Y, Zhang Z, Kashiwagi M et al (2016) Superenhancer reprogramming drives a B-cell-epithelial transition and high-risk leukemia. Genes Dev 30, 1971-1990
  72. Joshi I, Yoshida T, Jena N et al (2014) Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol 15, 294-304
  73. Churchman ML, Low J, Qu C et al (2015) Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell 28, 343-356
  74. Churchman ML, Evans K, Richmond J et al (2016) Synergism of FAK and tyrosine kinase inhibition in Ph(+) B-ALL. JCI Insight 1, e86082
  75. Churchman ML, Qian M, Kronnie GT et al (2018) Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell 33, 937-948 e8
  76. Andrews NC (1994) Erythroid transcription factor NF-E2 coordinates hemoglobin synthesis. Pediatr Res 36, 419-423