Acknowledgement
This research was fully financially supported by the Research Career Development Grant 2017 under the Office of Research Affairs, Faculty of Science and Technology, Prince of Songkla University, Thailand. Authors would like to thank Assoc. Prof. Dr. Seppo Karrila for valuable comments/suggestions on this paper.
References
- B. Bin-Mohsin and D. Lesnic, Determination of inner boundaries in modified Helmholtz inverse geometric problems using the method of fundamental solutions, Math. Comput. Simul., 82(8)(2012), 1445-1458. https://doi.org/10.1016/j.matcom.2012.02.002
- K. V. Bockstal and M. Slodicka, Recovery of a time-dependent heat source in one-dimensional thermoelasticity of type-III, Inverse Probl. Sci. Eng., 25(5)(2017), 749-770. https://doi.org/10.1080/17415977.2016.1199696
- H. Egger, and B. Hofmann, Tikhonov regularization in Hilbert scales under conditional stability assumptions, Inverse Probl.,34(11)(2018), 115015.
- A. Hazanee, Finite integration method for the time-dependent heat source determination of inverse problem, Proc 6th BUU Conf. (2017), 391-401.
- A. Hazanee and D. Lesnic, Determination of a time-dependent heat source from nonlocal boundary conditions, Eng. Anal. Bound. Elem., 37(2013), 936-956. https://doi.org/10.1016/j.enganabound.2013.03.003
- M. S. Hussein, N. Kinash, D. Lesnic and M. Ivanchov, Retrieving the timedependent thermal conductivity of an orthotropic rectangular conductor, Appl. Anal., 96(15)(2017), 2604-2618. https://doi.org/10.1080/00036811.2016.1232401
- M. I. Ismailov, F. Kanca and D. Lesnic, Determination of a time-dependent heat source under nonlocal boundary and integral overdetermination conditions, Appl. Math. Comput., 218(8)(2011), 4138-4146. https://doi.org/10.1016/j.amc.2011.09.044
- N. I. Ivanchov, On the determination of unknown source in the heat equation with nonlocal boundary conditions, Ukr. Math. J., 47(10)(1995), 1647-1652. https://doi.org/10.1007/BF01060166
- T. Kang, K. V. Bockstal and R. Wang, The reconstruction of a time-dependent source from a surface measurement for full Maxwell's equations by means of the potential field method, Comput. Math. Appl., 75(3)(2018), 764-786. https://doi.org/10.1016/j.camwa.2017.10.004
- A. Karageorghis, D. Lesnic and L. Marin, A survey of applications of the MFS to inverse problems, Inverse Probl. Sci. Eng., 19(3)(2011), 309-336. https://doi.org/10.1080/17415977.2011.551830
- R. Lesmana, A. Hazanee, A. Phon-On, J. Saelee, A finite integration method for a time-dependent heat source identification of inverse problem, Proc 5th AASIC. (2017), 444-451.
- M. Li, C. S. Chen, Y. C. Hon and P. H. Wen, Finite integration method for solving multi-dimensional partial differential equations, Appl. Math. Model., 39(17)(2015), 4979-4994. https://doi.org/10.1016/j.apm.2015.03.049
- M. Li, Z.L. Tian, Y.C. Hon, C.S. Chen and P.H. Wen, Improved finite integration method for partial differential equations, Eng. Anal. Bound. Elem., 64(2016), 230-236. https://doi.org/10.1016/j.enganabound.2015.12.012
- C. Shi, C. Wang and T.Wei, Numerical solution for an inverse heat source problem by an iterative method, Appl. Math. Comput., 244(2014), 577-597.
- M. Slodicka, Determination of a solely time-dependent source in a semilinear parabolic problem by means of boundary measurements, J. Comput. Appl. Math., 289(2015), 433-440. https://doi.org/10.1016/j.cam.2014.10.004
- V. V. Ternovskii, M. M. Khapaev and T. M. Khapaeva, Application of the Variational Method for Solving Inverse Problems of Optimal Control, Dokl. Math., 98(2018), 603-606. https://doi.org/10.1134/S1064562418070219
- N. Tian, J. Sun, W. Xu and C. H. Lai, Estimation of unknown heat source function in inverse heat conduction problems using quantum-behaved particle swarm optimization, Int. J. Heat Mass Transf., 54(2011), 4110-4116. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.061
- D. Trucu, D. B. Ingham and D. Lesnic, Reconstruction of the space and timedependent blood perfusion coefficient in bio-heat transfer, Heat Transf. Eng., 32(9)(2011), 800-810. https://doi.org/10.1080/01457632.2011.525430
- S. Twomey, On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature, J. ACM., 10(1)(1963), 97-101. https://doi.org/10.1145/321150.321157
- P. N. Vabishchevich, Iterative computational identification of a spacewise dependent the source in a parabolic equations, Inverse Probl. Sci. Eng., 25(8)(2017), 1168-1190. https://doi.org/10.1080/17415977.2016.1230611
- V. I. Vasil'ev and A. M. Kardashevsky, Iterative solution of the retrospective inverse problem for a parabolic equation using the conjugate gradient method, Numerical Analysis and Its Applications, LNCS, I. Dimov, I. Farago and L. Vulkov, (eds), Springer, Cham, 2017, 2698-705,
- V. I. Vasil'ev, V. V. Popov and A. M. Kardashevsky, Conjugate Gradient Method for Identification of a Spacewise Heat Source, Large-Scale Scientific Computing. LSSC. Lecture Notes in Computer Science. I. Lirkov, and S. Margenov, (eds), Springer, Cham, 2017, 600-607.
- P.H. Wen, Y.C. Hon, M. Li, T. Korakianitis, Finite integration method for partial differential equations, Applied Mathematical Modelling, Appl Math Model. 37(24)(2013), 10092-10106. https://doi.org/10.1016/j.apm.2013.05.054
- M. Yazdanparast, B. Voosoghi and F. Mossaiby, The Method of Fundamental Solutions for Solving the Inverse Problem of Magma Source Characterization, Geomat. Nat. Hazards Risk., 10(1)(2019), 797-819. https://doi.org/10.1080/19475705.2018.1547324
- D. F. Yun, Z. H. Wen and Y. C. Hon, Adaptive least squares finite integration method for higher-dimensional singular perturbation problems with multiple boundary layers, Appl. Math. Comput., 271(2015), 232-250. https://doi.org/10.1016/j.amc.2015.08.116