DOI QR코드

DOI QR Code

Microscopical observation and randomly amplified polymorphic DNA (RAPD) analysis of artificially cultivated Ganoderma applanatum

  • Woo-Sik Jo (Gyeongsangbuk-do Provincial Agricultural Research & Extension Service) ;
  • Young-Hyun Rew (Gyeongsangbuk-do Provincial Agricultural Research & Extension Service) ;
  • Seung-Chun Park (College of Veterinary Medicine, Kyungpook National University)
  • Received : 2024.06.18
  • Accepted : 2024.06.24
  • Published : 2024.06.30

Abstract

This study investigated the microscopic characteristics and genetic relationships of Ganoderma applanatum fruiting bodies. Basidiospores were brown, ellipsoid, and had one or two large vacuoles and a double wall. The surface of basidiospores was smooth or wrinkled and most had numerous small and shallow holes. The length and width of basidiospores of Ganoderma applanatum isolates GBGA-01, GBGA-02, ASI 50167, ASI 52821, ASI 52822, ASI 52823, and ASI 53399 were on average 7.6×4.8 ㎛, 7.9×4.6 ㎛, 7.7×4.9 ㎛, 8.2×5.3 ㎛, 7.7×5.0 ㎛, 8.0×4.9 ㎛, and 7.9×4.9 mm, respectively. In contrast, the basidiospores of Ganoderma lucidum isolate ASI 7125 were 7.7×5.2 ㎛. Using the universal ITS1/ITS4 primer set, the ITS region of the isolates were amplified and sequenced. The ITS sequences were very closely related to G. applantum isolate GBGA-01, GBGA-02, ASI 50167, ASI 52821, ASI 52822, ASI 52823 and ASI 53399, but were not the same species. Whereas, G. lucidum isolate ASI 7125 belongs to different group.

Keywords

Acknowledgement

This study was conducted with the support of National Joint Agricultural Research Project of the RDA (Project No. 20080301-030-034-001-05-00), Republic of Korea.

References

  1. Adaskaveg JE, Gilbertson RL. 1986. Cultural studies and genetics of sexuality of Ganoderma lucidum and G. tsugae in relation to the taxonomy of the G. lucidum complex. Mycologia. 78: 694-705.
  2. Blanchette RA. 1984. Screening wood decayed by white rot fungi for preferential lignin degradation. Appl Environ Microbiol. 48: 647-653.
  3. Crowhurst RN, Hawthorne BT, Rikkerink EHA, Tempelton MD. 1991. Differentiation of Fusarium solani F. cucurbitae race 1 and 2 by random amplification of polymorphic DNA. Curr. Genet. 20: 391-396.
  4. Hepting GH. 1971. Disease of forest and shade trees of the United States. U. S. Dept. Agric., Agric. Handb. 386: 1-658.
  5. Jo WS, Bae SH, Yoo YB. 2023. Characteristics of artficially cultivated Ganoderma applanatum fruitingbody. J Mushrooms. 21: 47-52.
  6. Jo WS, Cho YJ, Cho DH, Park SD, Yoo YB, Seok SJ. 2009. Culture Conditions for the Mycelial Growth of Ganoderma applanatum. Mycobiology. 37: 94-102.
  7. Jung SH, Lee YS, Shim SH, Lee S. Shin KH, Kim JS, Kim Ys, Kang SS. 2005. Inhibitory effects of Ganoderma applanatum on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissue. Phytother Res. 19: 477-480.
  8. Kim BK, Chung HS, Chung KS, Yang MS. 1980. Studies on the antineoplastic components of Korean basidiomycetes. Kor. J. Mycol. 8: 107-113.
  9. Kirk PM, Cannon PF, David JC, Stalpers JA. 2001. Ainsworth and Bisby's dictionary of the fungi. 9th edn., CAB International, Wallingford.
  10. Lee SY, Shim SH, Kim JS, Kang SS. 2006. Constituents from the fruiting bodies of Ganoderma applanatum and their aldose reductase inhibitory activity. Arch Pharm Res. 29: 479-483.
  11. Mims CW, Seabury F. 1989. Ultrastructure of Tube Formation and Basidiospore Development in Ganoderma lucidum. Mycologia. 81(5): 754-764.
  12. Mizuno T, Hayashi K, Arakawa M, Shinkai K, Shimizu M, Tanaka M. 1981. Host-mediated antitumor polysacchrides. III. Fractionation, chemical structure, and anti-tumor activity of water-soluble homoglucans isolated from kofukisarunokoshikake, the fruit body of Ganoderma applanatum. Shizuoka Daigaku Nogakubu Kenkyu Hokoku 31: 49-64.
  13. Mizuno T, Suzuki E, Maki K, Tamaki H. 1985. Fractionation, cemical modification and antitumor activity of water-insoluble polysaccharides of the fruiting body of Ganoderma lucidum. Nippon Nogeikagaku Kaishi. 59: 1143-1151.
  14. Nishitoba T, Goto S, Sato H, Sakamura S. 1989. Bitter triterpenoids from the fungus Ganorderma applanatum. Phytochemistry. 28: 193-197.
  15. Nishitoba T, Sato H, Oda K, Sakamura S. 1988. Novel triterpenoids and a sterol from the fungus Ganoderma lucidum. Agric. Biol. Chem. 52: 211-216.
  16. Park WH. 1991. Colored fungi of Korea. Kyo-Hak Publishing Co., Ltd. 504pp.
  17. Protiva J, Skorkovska H, Urban J, Vystrcil A. 1980. Triterpenes LXIII. Triterpenes and steroids from Ganoderma applanatum. Coll Czech Chem. Commun. 45: 2710-2713.
  18. Rohlf, F. J. 1988. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version 1.80. Exeter Software, Setauket, New York.
  19. Shim SH, Ryu J, Kim JS, Kang SS, Xu Y, Jung SH, Lee YS, Lee S, Shin KH. 2004. New lanostane-type triterpenoids from Ganoderma applanatum. J Nat Prod. 67: 1110-1103.
  20. Sneath PHA, Sokal RR. 1973. Numerical taxonomy: The principles and practice of Numerical classification. Freeman, Sanfrancisco. 573.
  21. Usui T, Iwasaki Y, Mizuno T, Tanaka M, Shinkai K, Arakawa M. 1983. Isolation and characterization of antitumor active β-D-glucans from the fruit bodies of Ganoderma applanatum. Carbohydr. Res. 115: 273-280.
  22. Wang XC, Xi RJ, Li Y, Wang DM, Yao YJ. 2012. The Species Identity of the Widely Cultivated Ganoderma,'G. lucidum'(Ling-zhi), in China. PLoS ONE 7(7): e40857. doi:10.1371/journal.pone.0040857.
  23. Welsh J, Mcclelland M. 1990. Fingerfrinting genomes using PCR with arbitrary primers. Nucleic Acids res. 18: 7213-7218.
  24. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primes are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.
  25. Yoder OC. 1988. Cochliobolus heterostrophus, cause of southern corn leaf blight. In: Ingram DS, Williams PH, eds. Advances in plant pathology. Vol. 6. London, England: Academic Press. 93-112.