DOI QR코드

DOI QR Code

시뮬레이터(EQPS)를 이용한 탄소발자국 최소화 운전 방안에 대한 연구

A study to find the operation conditions to minimize carbon footprint using a simulator(EQPS)

  • 한지수 (경기대학교 대학원 환경에너지공학과) ;
  • 이제승 (경기대학교 대학원 환경에너지공학과) ;
  • 이병희 (경기대학교 사회에너지시스템공학과)
  • Jisoo Han (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Jeseung Lee (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Byonghi Lee (Department of Civil & Energy System Engineering, Kyonggi University)
  • 투고 : 2024.04.25
  • 심사 : 2024.06.21
  • 발행 : 2024.06.30

초록

하수처리장은 공공부문 온실가스 목표 관리제 대상 시설로 탄소 배출량 감축이 시급하다. 하지만 최근 하수도 통계에 의하면 하수처리량에 대한 CO2 배출량은 2020년 대비 3.03 % 감소하였으며 이는 국가 온실가스 감축목표(NDC)를 충족하기에는 상당히 부족한 수치이다. 생물반응조에서 발생하는 직접 배출 온실가스와 하수처리과정에서 이용되는 에너지로 인한 간접배출 온실가스 두 가지를 모두 고려한 총 CFP (Carbon Footprint)를 최소화하는 생물반응조 운전 조건을 찾기 위해 EQPS라는 시뮬레이션 프로그램을 이용하여 연구를 수행하였다. 4-stage BNR 공법 하수처리장 생물반응조 내부반송율을 유입 수량의 100 %로 설정했을 때 총 CFP가 설계 운전 조건 대비 약 10.97 % 감소함을 확인하였다. 또한 대상 처리장의 N2O EF(Emission Factor)를 계산한 결과 0.138~0.199 %로 IPCC에서 제시한 기본값 1.6 %보다 낮은 값임을 파악하였다. 본 연구는 생물반응조 운전 조건 최적화를 통해 하수처리시설의 총 CFP를 최소화하는 방안을 제시하며, N2O 배출 감소를 위한 추가 연구의 필요성을 강조하고 있다.

Wastewater treatment plants (WWTPs) are obligated to reduce carbon emissions as a part of public sector greenhouse gas (GHG) emission reduction targets. However, Sewage Statistics(2022) shows that CO2 emissions per wastewater treatment volumes have decreased by only 3.03 % compared to 2020, which is far from enough to meet the Nationally Determined Contribution (NDC) targets. This study aimed to find operational conditions of biological reactors that minimize total carbon footprint (CFP). Total CFP considers both direct emissions from biological processes and indirect emissions from energy consumption. A study was conducted using a computer simulation program which is called as EQPS for a 4-stage BNR WWTP. The results showed that total CFP was reduced by 10.97% compared to the design condition when the mixed liquor recirculation (MLR) was set to 100 % of the influent flow. The N2O emission factor (EF) of the target WWTP was calculated to be 0.138-0.199 %, which is significantly lower than the IPCC default value of 1.6 %. This study proposes a method to minimize total CFP in WWTPs by optimizing biological reactor operation and emphasizes the need for further research on N2O emission reduction.

키워드

과제정보

본 연구는 환경부의 재원으로 환경산업기술원의 지원을 받은 상하수도 혁신 기술개발 사업의 일환으로 수행되었습니다. (과제번호: 2020002700010)

참고문헌

  1. UNFCCC CMA, "Nationally determined contributions under the Paris agreement", Synthesis report by the secretariat, UNFCCC, pp. 6. (2023). 
  2. Republic of Korea Ministry of Environment, The Republic of Korea's enhanced update of its first nationally determined contribution, pp. 2. (2021). 
  3. Korean Ministry of Environment, "Framework act on carbon neutrality and green growth for coping with climate crisis - Article 26 (Greenhouse gas target control in public sector)", https://www.law.go.kr/법령/기후위기 대응을 위한 탄소중립.녹색성장 기본법/(19208,20221231) [Accessed date; April 20, 2024] 
  4. Korean Ministry of Environment, "2022 Sewage Statistics", https://www.me.go.kr/home/web/policy_data/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=title&searchValue=%ED%86%B5%EA%B3%84&menuId=10264&orgCd=&condition.toInpYmd=null&condition.fromInpYmd=null&condition.orderSeqId=6671&condition.rnSeq=26&condition.deleteYn=N&condition.deptNm=null&seq=8191 [Accessed date; April 20, 2024] 
  5. Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and Zhang, H., "The earth's energy budget, climate feedbacks, and climate sensitivity", in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp. 1017~1018. (2023). 
  6. Lv, Y., Zhang, S., Yang, Y., Liu, Y., Xie, K. and Zhong, J., "N2O emission and control strategy in different wastewater treatment processes", E3S Web Conf., 118, pp. 1~4. (2019). 
  7. Massara, T. M., Malamis, S., Guisasola, A., Baeza, J. A., Noutsopoulos, C., and Katsou, E., "A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water", Science of The Total Environment, 596-597, pp. 106~123. (2017). 
  8. Law, Y., Lant, P., and Yuan, Z., "The confounding effect of nitrite on N2O production by an enriched ammonia-oxidizing culture.", Environmental Science & Technology, 47(13), pp. 7186~7194. (2013). 
  9. Cho, H. M., and Yoo, S. H., Energy self-sufficient in environmental facilities of Seoul metropolitan government, The Seoul Institute, pp. 16~21. (2012). 
  10. HEPS, "Effluent quality prediction program", http://www.heps4.com/default/business/sbu06.php [Accessed date; June 19, 2024] 
  11. Suwon Special City, Performance evaluation of the Suwon city public sewerage system management outsourcing contract report (2023). 
  12. Lee, B. H., "Comparison of effluent suspended solid concentrations from two types of rectangular secondary clarifiers", Water, 14(10), pp. 1577~1596. (2022). 
  13. Henze, M., Grady, L., Gujer, W., Marais, G. V. R., and Matsuo, T., Activated Sludge Model No 1., IAWPRC, pp. 4~11. (1987). 
  14. Mamais, D., Jenkins, D., and Pitt. P., "A rapid physical-chemical method for the determination of readily biodegradable soluble COD in municipal wastewater", Water Research, 27(1), pp. 195~197. (1993). 
  15. Mannina, G., Ekama, G., Caniani, D., Cosenza, A., Esposito, G., Gori, R., Garrido-Baserba, M., Rosso, D., and Olsson, G., "Greenhouse gases from wastewater treatment - A review of modelling tools", Science of The Total Environment, 551-552, pp. 254~270. (2016). 
  16. Pocquet, M., Wu, Z., Queinnec, I., and Sperandio, M., "A two pathway model for N2O emissions by ammonium oxidizing bacteria supported by the NO/N2O variation", Water Research., 88, pp. 948~959. (2016). 
  17. Dynamita, Dynamita wiki-Mechanisms of focus models (Sumo4N), https://wiki.dynamita.com/en/biokinetic_process_models [Accessed date; April 20, 2024] 
  18. Han, J. S., Kim, M. C., and Lee, B. H., "Finding the operation conditions to minimize nitrous oxide emission from MLE configuration wastewater treatment plant using computer simulation program", Journal of the Korea Organic Resources Recycling Association, 31(2), pp. 19~38. (2023). 
  19. DONGHAE Engineering & Consultants co., Ltd, Korean Society of Water & Wastewater, Water treatment Function Reinforcement and Facility Capacity recalculation of water reuse center report, pp. 6-1~6-38. (2021). 
  20. Climate Transparency, "The climate transparency report 2021-South Korea", https://www.climate-transparency.org/wp-content/uploads/2021/10/CT2021SouthKorea.pdf [Accessed date; April 20, 2024] 
  21. Bartram, D., Short, M. D., Ebie, Y., Farkas, J., Gueguen, C., Peters, G. M., Zanzottera, N. M., and Karthik, M., 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 5), IPCC Task Force on National Greenhouse Gas Inventories, pp. 6.36~6.39, 6.61. (2019). 
  22. Vasilaki, V., Massara, T. M., Stanchev, P., Fatone, F., and Katsou, E., "A decade of nitrous oxide (N2O) monitoring in full-scale wastewater treatment processes: A critical review.", Water Research, 161, pp. 392~412. (2019) 
  23. Haas, D. D., and Ye, L., "Better Understanding Wastewater Treatment's Nitrous Oxide Emissions", Water e-Journal, 6(2), pp. 1~15. (2021).