DOI QR코드

DOI QR Code

Analysis of contamination characteristics of filter cloth in filter press by repeated dehydration of organic sludge and evaluation of ultrasonic cleaning application

유기성 슬러지 반복 탈수에 의한 필터프레스 여과포 오염 특성 분석 및 초음파 세척 적용 평가

  • Eunju Kim (Center for Plant Engineering, Institute for Advanced Engineering) ;
  • Cheol-Jin Jeong (Center for Plant Engineering, Institute for Advanced Engineering) ;
  • Kyung Woo Kim (Center for Plant Engineering, Institute for Advanced Engineering) ;
  • Tae Gyu Song (Institute of Technology Department, Dongil Canvas Engineering Co. Ltd.) ;
  • Seong Kuk Han (Center for Plant Engineering, Institute for Advanced Engineering)
  • 김은주 (고등기술연구원 플랜트엔지니어링 본부) ;
  • 정철진 (고등기술연구원 플랜트엔지니어링 본부) ;
  • 김경우 (고등기술연구원 플랜트엔지니어링 본부) ;
  • 송태규 ((주)동일캔바스엔지니어링 기술연구소 ) ;
  • 한성국 (고등기술연구원 플랜트엔지니어링 본부 )
  • Received : 2024.03.29
  • Accepted : 2024.05.02
  • Published : 2024.06.30

Abstract

In this study, the regeneration effect of pressurized water and ultrasonic cleaning was investigated for contaminated filter cloth from the sewage sludge filter press process. For this purpose, contaminated filter cloth was collected from a 3-ton sewage sludge hydrothermal carbon treatment filter press. First, the contamination characteristics were analyzed. According to the location of the filter cloth, air permeability and unit mass were measured, and compared with the values of a new filter cloth. Next, the results were mapped over the entire area to evaluate the contamination characteristics. Finally, pressure cleaning at 3 bar and ultrasound at frequencies of 34, 76, 120, and 168 kHz were performed on the contaminated filter cloth. In addition, the cleaning efficiency was evaluated by 3 levels of contamination degree. As a result, pore contamination occurred mainly at the bottom and both sides of the filter cloth, where the filter material was continuously injected and compressed. Surface contamination appeared evenly over the entire area. As a result of washing, air permeability increased by 1.3-3.1%p and contaminant removal was by 2.7-4.4% under pressure. In ultrasonic cleaning, air permeability increased by 12.5-61.5%p and contaminants were removed by 2.7-29.2%. In ultrasonic cleaning the lower the frequency, the higher air permeability and contaminant removal rate. Also, The higher pore contamination level, the better the air permeability improvement and contaminant removal.

본 연구에서는 하수슬러지 필터프레스 공정에서 발생하는 오염 여과포에 대하여 가압수 및 초음파 세척에 대한 재생효율을 평가하였다. 이를 위하여 3톤 규모 하수슬러지 수열탄화물 처리 필터프레스로부터 오염된 여과포를 채취하였다. 먼저, 필터프레스 여과포의 오염 특성을 평가하였다. 오염 여과포의 위치에 따른 공기투과도와 단위질량을 측정하였으며, 새 여과포 측정값과 비교하였다. 다음으로 오염 여과포 전체 면적에 대하여 공기투과도 및 단위질량 분포를 지도화하여 오염 특성을 평가하였다. 마지막으로 오염 여과포를 대상으로 3 bar의 압력 세정 및 34, 76, 120, 168 kHz 주파수의 초음파 세척을 수행하였다. 이때, 여과포의 기공 오염 정도를 3단계로 나누어 세척효율을 평가하였다. 여과포 오염 비교 결과, 기공 오염은 여과물질이 지속적으로 투입, 압착되는 여과포 하부와 양측면 위주로 발생하였으며, 표면 오염은 전체면적에 걸쳐 고르게 나타났다. 가압 세척 결과, 공기투과도는 1.3-3.1%p 증가하였으며, 오염물질은 2.7-4.4% 제거되었다. 초음파 세척결과, 공기투과도는 12.5-61.5%p 증가하였으며 오염물질은 2.7-29.2% 제거되었다. 초음파 세척에서 주파수가 낮을수록 공기투과도 재생율과 오염물질 제거율이 우수하였다. 여과포의 기공 오염 정도가 클수록 초음파 세척 후 공기투과도 향상 및 오염물질 제거 효과가 우수하였다.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(No. 20018186). 이 논문은 환경부 한국환경산업기술원 상하수도혁신 기술개발 사업에 의해 지원(과제번호 2021002690009)을 받아 연구되었으며, 이에 감사드립니다.

References

  1. Walter G. and Christian A., Filtration, Ullmann's encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 53~62. (2000). 
  2. Fernando, F. R., Carlos, P. L., Frank, C. W., and Jose, L. N., "The reaction environment in a filter-press laboratory reactor: the 1-LC flow cell", Electrochimica Acta, 161, pp. 436~452 (2015).  https://doi.org/10.1016/j.electacta.2015.02.161
  3. Lorenzo, G., Piernicola, M., Marzia, M., Chiara, C., and Alessandro, P., "Addition of a steel pre-filter to improve plate filter-press performance in olive oil filtration", Journal of Food Engineering, 157, pp. 84~87 (2015).  https://doi.org/10.1016/j.jfoodeng.2015.02.025
  4. Henriksson, B., "Focus on separation in the mining industry", Filtration & Separation, 37(7), pp. 26~29 (2000).  https://doi.org/10.1016/S0015-1882(00)80139-1
  5. Han, S. K., Jung, H. S., Song, H. W., Kim, H., and Ahn. D. H., "Solid-liquid separation characteristics of membrane filter press according to coagulant properties of anaerobic digestion waste water", Journal of Korea Organic Resources Recycling Association, 22(3), pp. 23~32 (2014). 
  6. Mark, S. K., Barbara J. A., and Peter J. B., "Challenges in fine coal processing, dewatering, and disposal", The Society for Mining, metallurgy, and Exploration, Inc., pp. 279~292 (2012). 
  7. Wisdom, T., "Maintaining high availability and low operational costs for filtered tailings facilities", in Proceedings of the 22st International Seminar on Paste, Thickened and Filtered Tailings, pp. 337~348 (2019).
  8. Parmentier, A. H., U.S. Patent, 4,931,177. (1990). 
  9. Wolfgang, W., Szymon, H., and Matthias, G., "Combined filtration and oxalic acid leaching for recovering phosphorus from hydrothermally carbonized sewage sludge", Journal of Environmental Chemical Engineering, 9, pp. 104800. (2021). 
  10. Bernd, F., Patrick, M., and Hermann, N., "Regeneration assessments of filter fabrics of filter presses in the mining sector", Minerals Engineering, 168, pp. 1~10. (2021).  https://doi.org/10.1016/j.mineng.2021.106922
  11. Anlauf, H., Wet cake filtration: Fundamentals, equipment, and strategies, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 41~84 (2019). 
  12. Kurita, T., and Hara, T., U.S. Patant, 4,129,137. (1978). 
  13. Kitae, K., and Eunsoo, N., KR Patent, 10-0598675. (2006). 
  14. Youngsoo, K., and Heehong P., KR Patent, 10-1533647. (2015). 
  15. Masahiko, K., Takao, S., Tomomichi, N., and Hajime, W., EP Patent, 2,316,554,A1. (2011). 
  16. Rushton, A., Ward, A. S., and Holdich, R. G., Solid-liquid filtration and separation tecnolony, second, Completely Revised ed., Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp. 41~84. (2008). 
  17. Tuori, T., Sekki, H., Ihalainen, J., Pirkonen, P., and Mursunen, H., U.S Patent, 6,217,782. (2001). 
  18. Gotoh, K., and Harayama, K., "Application of ultrasound to textiles washing in aqueous solutions", Ultrasonics Sonochemistry, 20, pp 747~753. (2013).  https://doi.org/10.1016/j.ultsonch.2012.10.001
  19. Muthukumaran, S., Yang, K., Seuren, A., Kentish, S., Ashookkumar, M., Stevens, G. W., and Grieser, F., "The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry", Separation and Purification Technology, 39, pp. 99~107. (2004).  https://doi.org/10.1016/j.seppur.2003.12.013
  20. Afolabi, O. O. D., Sohail, M., and Thomas, C. P. L., "Microwave hydrothermal carbonization of human biowastes", Waste Biomass Valorization, 6(2), pp 147~154. (2015).  https://doi.org/10.1007/s12649-014-9333-4
  21. Juang, R.-S., and Lin, K.-H., "Flux recovery in the ultrafiltration of suspended solutions with ultrasound", Journal of Membrane Science, 243, pp. 115~124. (2004).  https://doi.org/10.1016/j.memsci.2004.06.013
  22. 산업표준심의회, 텍스타일-천의 공기투과도 측정, KS K ISO 9237:1995, https://e-ks.kr/streamdocs/view/sd;streamdocsId=72340781145838399 (2022) 
  23. Mirzaie, A., and Mohammadi, T., "Effect of ultrasonic waves on flux enhancement in microfiltration of milk", Journal of Food Engineering, 108, pp. 77~86. (2012).  https://doi.org/10.1016/j.jfoodeng.2011.07.026
  24. Plesset. M., "The dynamics of cavitation bubbles", Journal of Applied Mechanics, 16, pp. 228~231. (1949). https://doi.org/10.1115/1.4009975