DOI QR코드

DOI QR Code

Effects of drumming exercise on the autonomic nervous system in overweight women

드러밍 운동이 과체중 여성의 자율신경계에 미치는 영향

  • Jeong In Kwon (Department of Sport Sciences, University of Seoul) ;
  • Jae Hoon Lee (Department of Sport Sciences, University of Seoul) ;
  • Joon Yong Cho (Exercise Biochemistry Laboratory, Korea National Sport University) ;
  • Yoo Sung Oh (Department of Sport Sciences, University of Seoul)
  • 권정인 (서울시립대학교 스포츠과학과) ;
  • 이재훈 (서울시립대학교 스포츠과학과) ;
  • 조준용 (한국체육대학교 운동건강관리학과) ;
  • 오유성 (서울시립대학교 스포츠과학과)
  • Received : 2024.03.25
  • Accepted : 2024.04.15
  • Published : 2024.04.30

Abstract

The aim of this study was to explore the impact of body mass index (BMI) and drumming exercise on autonomic nervous system function in adult women. Ten adult women (aged 30-50) were divided into two groups based on their BMI: a normal BMI group (Low BMI, LBMI < 23 kg/m2) and an overweight BMI group (High BMI, HBMI > 23 kg/m2). Both groups participated in a drumming exercise program, consisting of 50-minute sessions, three times a week, for a duration of 8 weeks. Body composition and heart rate variability were assessed before and after the 8-week exercise period. Heart rate variability was evaluated using linear analysis in the time domain and frequency domain. Additionally, non-linear analysis was conducted using a Poincaré plot. The autonomic nervous system index was determined by measuring parasympathetic nervous system index and sympathetic nervous system index. Following the 8-week intervention, the HBMI group exhibited a significant decrease in weight (p=0.034), BMI (p=0.044), body fat mass (p=0.032), and waist circumference (p=0.013) compared to the LBMI group. Furthermore, the HBMI group demonstrated significant increases in RMSSD (p=0.018) and TP (p=0.033) in linear analysis, as well as SD1 (p=0.018) in non-linear analysis and PNS Index (p=0.040) compared to the LBMI group. RMSSD, SD1, and PNS Index serve as indicators of parasympathetic nervous system activity in linear and non-linear analyses, respectively. These findings indicate that drumming exercise significantly enhances autonomic nervous system function in overweight women.

이 연구는 성인 여성을 대상으로 체질량지수와 드러밍 운동이 자율신경계에 미치는 영향을 규명하는데 목적이 있다. 30-50대의 성인 여성10명을 체질량지수가 정상인 집단(Low BMI, LBMI <23kg/m2)과 과체중 이상인 집단(High BMI, HBMI>23kg/m2)으로 나누어 드러밍 운동을 실시하였다. 드러밍 운동은 1회 50분, 주 3회, 8주간 실시하였으며, 운동 전후 신체조성과 심박변이도를 측정하였다. 심박변이도는 선형분석인 시간 영역 분석과 주파수 영역 분석을 통해 SDNN(Standard Deviation of NN interval), RMSSD(Root Mean Square of the Successive Differences), HF(High Frequency), LF(Low Frequency), TP(Total Power)를 측정하였다. 비선형분석인 푸앵카레 플롯(Poincaré plot)을 통해 SD1(Standard Deviation of the distance of each point from the y = x axis), SD2(Standard Deviation of each point from the y = x + average R-R interval), SD2/SD1을 측정하였다. 자율신경계 지수로 부교감신경계지수(Parasympathetic Nervous System Index; PNS Index)와 교감신경계지수(Sympathetic Nervous System; SNS Index)를 측정하였다. 연구 결과, 운동 전 심박변이도에서 HBMI 집단과 LBMI 집단 간에는 유의한 차이가 나타나지 않았다. 그러나, 8주간의 드러밍 운동 후에는 HBMI 집단이 LBMI 집단에 비해 체중(p=0.034), 체질량지수(p=0.044), 체지방량(p=0.032), 허리둘레(p=0.013)에서 유의한 상호작용 효과가 나타났다. 심박변이도에서 HBMI 집단은 LBMI 집단에 비해 선형 분석에서 RMSSD(p=0.018)와 TP(p=0.033), 비선형분석에서는 SD1(p=0.018), 자율신경계지수에서는 PNS Index(p=0.040)가 유의하게 증가하였다. RMSSD, SD1 및 PNS Index는 부교감신경계의 활동을 나타내는 지표이다. 결론적으로 8주간의 드러밍 운동이 과체중 이상 여성의 자율신경계 중 부교감신경계의 개선에 긍정적인 효과를 미치는 것으로 확인되었다.

Keywords

References

  1. GBD 2015 Obesity Collaborators, "Health effects of overweight and obesity in 195 countries over 25 years", New England journal of medicine, Vol.377, No.1, pp. 13-27, (2017).  https://doi.org/10.1056/NEJMoa1614362
  2. K. Bhaskaran, I. dos-Santos-Silva, D. A. Leon, I. J. Douglas, L. Smeeth, "Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3.6 million adults in the UK", The lancet Diabetes & endocrinology, Vol.6, No.12, pp. 944-953, (2018).  https://doi.org/10.1016/S2213-8587(18)30288-2
  3. K. Laederach-Hofmann, L. Mussgay, H. Ruddel, "Autonomic cardiovascular regulation in obesity", Journal of endocrinology, Vol.164, No.1, pp. 59-66, (2000).  https://doi.org/10.1677/joe.0.1640059
  4. G. E. Nam, "Current status and epidemiology of adult obesity in Korea", Journal of the Korean Medical Association, Vol.65, No.7, pp. 394-399, (2022).  https://doi.org/10.5124/jkma.2022.65.7.394
  5. Eunja. Park, "Women's Health across the Life Cycle and Its Policy Implications", Korea Institute for Health And Social Affairs, Vol.321, pp. 7-17, (2023). 
  6. S. H. Yi, K. Lee, D. G. Shin, J. S. Kim, H. C. Ki, "Differential association of adiposity measures with heart rate variability measures in Koreans", Yonsei medical journal, Vol.54, No.1, pp. 55, (2013). 
  7. K. J. Park, H. Jeong, "Assessing methods of heart rate variability", Annals of Clinical Neurophysiology, Vol.16, No.2, pp. 49-54, (2014).  https://doi.org/10.14253/kjcn.2014.16.2.49
  8. Rahimah Zakaria, Asma Hayati Ahmad, Lecture Notes on Medical Physiology, pp.292, Penerbit USM, (2018). 
  9. A. A. Thorp, M. P. Schlaich, "Relevance of sympathetic nervous system activation in obesity and metabolic syndrome", Journal of diabetes research, Vol.2015, pp. 1-12, (2015).  https://doi.org/10.1155/2015/341583
  10. S. Akhtar, N. Begum, S. Ferdousi, S. Begum, T. Ali, "Relationship between obesity and parasympathetic nerve function", Journal of Bangladesh Society of Physiologist, Vol.3, pp. 50-54, (2008).  https://doi.org/10.3329/jbsp.v3i0.1797
  11. H. Jeong, K. J. Park, "Clinical applications of heart rate variability in neurological disorders", Journal of the Korean Neurological Association, Vol.35, No.1, pp. 1-7, (2017).  https://doi.org/10.17340/jkna.2017.4.23
  12. F. Shaffer, J. P. Ginsberg, "An overview of heart rate variability metrics and norms", Frontiers in public health, Vol.5, pp. 290215, (2017). 
  13. R. L. Yadav, P. K. Yadav, L. K. Yadav, K. Agrawal, S. K. Sah, M. N. Islam, "Association between obesity and heart rate variability indices: an intuition toward cardiac autonomic alteration-a risk of CVD", Diabetes, metabolic syndrome and obesity: targets and therapy, pp. 57-64, (2017). 
  14. V. Saboo, S. K. Sharma, "Comparative study of heart rate variability in obese and normal young adults in Medical College", Journal of Advanced Medical and Dental Sciences Research, Vol.6, No.5, pp. 90-94, (2018). 
  15. A. R. Shenoy, V. Doreswamy, J. P. Shenoy, V. S. Prakash, "Impact of obesity on cardiac autonomic functions in middle aged males", National Journal of Physiology, Pharmacy and Pharmacology, Vol.4, No.3, pp. 236, (2014). 
  16. A. K. Singh, "A Comparative Study Of Heart Rate Variability In Middle Aged Obese Male And Non Obese Male", International Journal of Integrative Medical Sciences, Vol.6, No.2, pp. 785-88, (2019).  https://doi.org/10.16965/ijims.2019.107
  17. D. Rajashree, V. M. Paunikar, "Relationship of body mass index to heart rate variability in young males", Medica Innovatica, Vol.4, pp. 10-12, (2015). 
  18. J. Sztajzel, A. Golay, V. Makoundou, T. N. O. Lehmann, V. Barthassat, K. Sievert, Harsch. E. Bobbioni, "Impact of body fat mass extent on cardiac autonomic alterations in women", European journal of clinical investigation, Vol.39, No.8, pp. 649-656, (2009).  https://doi.org/10.1111/j.1365-2362.2009.02158.x
  19. A. Struven, C. Holzapfel, C. Stremmel, S. Brunner, "Obesity, nutrition and heart rate variability", International journal of molecular sciences, Vol.22, No.8, pp. 4215, (2021). 
  20. F. S. Routledge, T. S. Campbell, J. A. McFetridge-Durdle, S. L. Bacon, "Improvements in heart rate variability with exercise therapy", Canadian Journal of Cardiology, Vol.26 No.6, pp. 303-312, (2010).  https://doi.org/10.1016/S0828-282X(10)70395-0
  21. B. Graessler, B. Thielmann, I. Boeckelmann, A. Hoekelmann, "Effects of different training interventions on heart rate variability and cardiovascular health and risk factors in young and middle-aged adults: A systematic review", Frontiers in physiology, Vol.12, pp. 657274 (2021). 
  22. P. Wright, P. Ehnold, R. Roschmann, I. Wolf, "Changes of physiological parameters in a sportive Drums Alive®-Drumming activity and its effects on concentration and awareness performance", The drum beat-Chemnitz drumming project, pp. 1-8, (2010). 
  23. S. Vazou, B. Klesel, K. D. Lakes, A. Smiley, "Rhythmic physical activity intervention: exploring feasibility and effectiveness in improving motor and executive function skills in children", Frontiers in Psychology, Vol.11, pp. 556249, (2020). 
  24. C. G. Ballmann, "The influence of music preference on exercise responses and performance: a review", Journal of Functional Morphology and Kinesiology, Vol.6, No.2, pp. 33, (2021). 
  25. M. L. Chanda, D. J. Levitin, "The neurochemistry of music", Trends in cognitive sciences, Vol.17, No.4, pp. 179-193, (2013).  https://doi.org/10.1016/j.tics.2013.02.007
  26. B. M. Choi, K. J. Rho, "Heart rate variability, HRV", Anesthesia and pain medicine, Vol.8, No.2, pp. 45-86, (2004). 
  27. S. A. Mohamed, N. Lamya, O. L. F. A. Nejlaoui, M. Hamda, "Effects of High-Impact Aerobics vs. mixed Low-Impact Aerobics and Strength Training Program on Body composition, physical fitness and CVD Risk factors in Overweight and Obese Grade I Women", The Journal of sports medicine and physical fitness, Vol.57, No.3, (2015). 
  28. P. Bhati, V. Bansal, J. A. Moiz, "Comparison of different volumes of high intensity interval training on cardiac autonomic function in sedentary young women", International journal of adolescent medicine and health, Vol.31, No.6, (2019). 
  29. M. Buchheit, C. Gindre, "Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load", American Journal of Physiology-Heart and Circulatory Physiology, Vol.291, No.1, pp. H451-H458, (2006).  https://doi.org/10.1152/ajpheart.00008.2006
  30. N. M. Templeman, S. Skovso, M. M. Page, G. E. Lim, J. D. Johnson, "A causal role for hyperinsulinemia in obesity", Journal of Endocrinology, Vol.232, No.3, pp. R173-R183, (2017).  https://doi.org/10.1530/JOE-16-0449
  31. F. Majeed, T. Yar, "Comparison of cardiovascular autonomic activity (heart rate variability and baroreceptor sensitivity) in young healthy females during fasting and hyperglycaemia". Diabetes & Metabolic Syndrome: Clinical Research & Reviews, Vol.14, No.5, pp. 1511-1518, (2020).  https://doi.org/10.1016/j.dsx.2020.07.035
  32. M. Buchheit, C. Simon, F. Piquard, J. Ehrhart, G. Brandenberger, "Effects of increased training load on vagal-related indexes of heart rate variability: a novel sleep approach", American Journal of Physiology-Heart and Circulatory Physiology, Vol.287, No.6, pp. H2813-H2818, (2004).  https://doi.org/10.1152/ajpheart.00490.2004
  33. A. Alansare, K. Alford, S. Lee, T. Church, H. C. Jung, "The effects of high-intensity interval training vs. moderate-intensity continuous training on heart rate variability in physically inactive adults", International journal of environmental research and public health, Vol.15, No.7, pp. 1508, (2018). 
  34. R. Ramirez-Velez, J. E. Correa-Bautista, G. P. V. Orjuela, L. A. Tellez, A. G. Hermoso, M. A. T. Sanders, K. Gonzalez-Ruiz, "Effect of Moderate Versus High Intensity Interval Exercise Training on Heart Rate Variability Parameters in Inactive Latin-American Adults: A Randomized Clinical Trial", Medicine and Science in Sports and Exercise, Vol.49, No.5, pp. 28-28, (2017).