DOI QR코드

DOI QR Code

유체 디스펜싱 시스템의 프린팅 프로세스 최적화를 위한 주요 파라미터 분석

Analysis of Key Parameters for the Printing Process Optimization of a Fluid Dispensing Systems

  • 강호승 (상지대학교 신에너지자원공학과) ;
  • 정해창 (상지대학교 반도체물리전자학과) ;
  • 홍순호 (상지대학교 반도체물리전자학과) ;
  • 윤남경 ((주)쓰리에이치코퍼레이션 기술지원팀) ;
  • 손선영 (상지대학교 반도체물리전자학과)
  • Hoseung Kang (Department of New Energy and Mining Engineering, Sangji University) ;
  • Haechang Jeong (Department of Semiconductor Physics and Electronic, Sangji University) ;
  • Soonho Hong (Department of Semiconductor Physics and Electronic, Sangji University) ;
  • Nam Kyung Yoon (Technical Support Department, 3H Corporation) ;
  • Sunyoung Sohn (Department of Semiconductor Physics and Electronic, Sangji University)
  • 투고 : 2024.05.04
  • 심사 : 2024.05.29
  • 발행 : 2024.07.01

초록

유체 디스펜싱(fluid dispensing) 방식인 Microplotter 시스템은 압전 소자를 통한 초음파 펌핑(pumpin)을 기반으로 유체를 분사한다. 이 기법은 넓은 범위의 점도를 가진 다양한 물질들이 마이크로 사이즈로 프린팅 되는 것을 가능하게 한다. 본 논문에서는 디스펜서 프린팅 기술에 대해 소개하고 장비를 이용한 다양한 공정을 이해 및 응용에 목적을 두고 있다. 또한, 분사 강도, 분사 시 팁의 높이, 분사 속도와 같은 매개변수들을 조절하여 장비의 최적화 방법에 대해 설명하고자 한다. 금속 나노 입자, 탄소나노튜브, DNA, 단백질 등 광범위한 유체와 호환된다는 Microplotter의 장점을 이용함으로써 인쇄전자, 생명공학, 화학공학 등 다양한 분야에서 활용될 것으로 기대된다.

The Microplotter system with a fluid dispensing method, sprays fluid based on ultrasonic pumping through piezoelectric devices. This technique can possible for various materials with a wide range of viscosities to be printed in microscale. In this paper, we introduces dispenser printing technology as well as aim to understand and apply various processes using the equipment. In addition, we will explain how to optimize the equipment by adjusting parameters such as spray intensity, tip height during printing, and patterning speed. By utilizing Microplotter's advantage of being compatible with a wide range of fluids, including metal nanoparticles, carbon nanotubes, DNA, and proteins, it is expected to be used in various fields such as printed electronics, biotechnology, and chemical engineering.

키워드

과제정보

본 논문은 강원특별자치도(교육장비지원사업), 한국연구재단(NRF-2022R1F1A1074752) 및 상지대학교 대학원 지원에 의하여 수행된 연구 결과임.

참고문헌

  1. A. Baptista, F.J.G. Silva, J. Porteiro, J. L. Miguez, G. Pinto, and L. Fernandes, Proc. Manuf., 17, 746 (2018). doi: https://doi.org/10.1016/j.promfg.2018.10.125 
  2. S. Shahidi, B. Moazzenchi, and M. Ghoranneviss, Eur. Phys. J. Appl. Phys., 71, 31302 (2015). doi: https://doi.org/10.1051/epjap/2015140439 
  3. W. J. Lee, W. T. Park, S. Park, S. Sung, Y. Y. Noh, and M. H. Yoon, Adv. Mater., 27, 34 (2015). doi: https://doi.org/10.1002/adma.201502239 
  4. G. R. Bhimanapati, D. Kozuch, and J. A. Robinson, Nanoscale, 6, 11671 (2014). doi: https://doi.org/10.1039/c4nr01816h 
  5. Z. W. Zhong, Mater. Manuf. Processes, 36, 987 (2021). doi: https://doi.org/10.1080/10426914.2021.1885709 
  6. M. A. Shah, D. G. Lee, B. Y. Lee, and S. Hur, IEEE Access, 9, 140079 (2021). doi: https://doi.org/10.1109/ACCESS.2021.3119219 
  7. R. Parashkov, E. Becker, T. Riedl, H. H. Johannes, and W. Kowalsky, Proc. IEEE, 93, 1321 (2005). doi: https://doi.org/10.1109/JPROC.2005.850304 
  8. B. Bao, J. Sun, M. Gao, X. Zhang, L. Jiang, and Y. Song, Nanoscale, 8, 9556 (2016). doi: https://doi.org/10.1039/C5NR09239F 
  9. P. F. Moonen, I. Yakimets, and J. Huskens, Adv. Mater., 24, 5526 (2012). doi: https://doi.org/10.1002/adma.201202949 
  10. H. Zhang, S. K. Moon, and T. H. Ngo, Int. J. Precis. Eng. Manuf. Green Technol., 7, 511 (2020). doi: https://doi.org/10.1007/s40684-019-00139-9 
  11. A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G.A.J. Amaratunga, and W. I. Milne, Proc. IEEE, 100, 1486 (2012). doi: https://doi.org/10.1109/JPROC.2012.2190168 
  12. R. F. Pease and S. Y. Chou, Proc. IEEE, 96, 248 (2008). doi: https://doi.org/10.1109/JPROC.2007.911853 
  13. R. R. Sondergaard, M. Hosel, and F. C. Krebs, J. Polym. Sci., Part B: Polym. Phys., 51, 16 (2013). doi: https://doi.org/10.1002/polb.23192 
  14. S. Khan, L. Lorenzelli, and R. S. Dahiya, IEEE Sens. J., 15, 3164 (2015). doi: https://doi.org/10.1109/JSEN.2014.2375203 
  15. K.K.B. Hon, L. Li, and I. M. Hutchings, CIRP Ann., 57, 601 (2008). doi: https://doi.org/10.1016/j.cirp.2008.09.006 
  16. B. Derby, Annu. Rev. Mater. Res., 40, 395 (2010). doi: https://doi.org/10.1146/annurev-matsci-070909-104502 
  17. X. Du, S. P. Wankhede, S. Prasad, A. Shehri, J. Morse, and N. Lakal, J. Mater. Chem. C, 10, 14091 (2022). doi: https://doi.org/10.1039/D2TC02511F 
  18. P. Calvert, Chem. Mater., 13, 3299 (2001). doi: https://doi.org/10.1021/cm0101632 
  19. B. Panreck and M. Hild, Int. Scholarly Sci. Res. Innovation, 12, 678 (2018). doi: https://api.semanticscholar.org/CorpusID:53647136 
  20. T. Holeman, Master's Thesis, The Systematic Approach to Microplotter Printing of Perovskite Precursors, p. 1-96, Ohio University, Athens (2018). 
  21. M. Ferrari, S. Dalola, V. Ferrari, G. Cordaro, C. Cristiani, and G. Dotelli, Procedia Eng., 168, 1196 (2016). doi: https://doi.org/10.1016/j.proeng.2016.11.409 
  22. A. Rohit, Master's thesis, Optimization and Characterization of a Capillary Contact Micro-Plotter for Printed Electronic Devices, p. 1-105, Ohio University, Athens (2017). 
  23. Y. Fang, H. Zou, S. Peng, G. Dong, and M. M. Tentzeris, ACS Appl. Electron. Mater., 5, 4157 (2023). doi: https://doi.org/10.1021/acsaelm.3c00428 
  24. D. Chester, P. Theetharappan, T. Ngobili, M. Daniele, and A. C. Brown, ACS Appl. Mater. Interface, 12, 47309 (2020). doi: https://doi.org/10.1021/acsami.0c15056 
  25. Y. Kim, W. Sim, C. Park, Y. Yoo, J. Joung, and Y. Oh, 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, Zhuhai, China, 2006) p. 826-831. doi: https://doi.org/10.1109/NEMS.2006.334905 
  26. B. H. Kim, T. G. Kim, T. K. Lee, S. Kim, S. J. Shin, S. J. Kim, and S. J. Lee, Sens. Actuators, A, 154, 132 (2009). doi: https://doi.org/10.1016/j.sna.2009.05.021 
  27. A. C. Taylor, Ph.D. Thesis, Diamond for Stem Cell Biotechnology, p. 1-200, University College London, London (2016).
  28. B. J. Larson, S. D. Gillmor, and M. G. Lagally, Rev. Sci. Instrum., 75, 832 (2004). doi: https://doi.org/10.1063/1.1688436 
  29. N. P. Simonenko, N. A. Fisenko, F. S. Fedorov, T. L. Simonenko, A. S. Mokrushin, E. P. Simonenko, G. Korotcenkov, V. V. Sysoev, V. G. Sevastyanov, and N. T. Kuznetsov, Sensors, 22, 3473 (2022). doi: https://doi.org/10.3390/s22093473 
  30. Y. Ge, Ph.D. Thesis, Printed Charge Storage Capacitor, p. 1-120, Technische Universitat, Dresden (2017). 
  31. Sonoplot®, Printing Lines of Nanometallic Ink for Conductive Electronic Traces (2016). https://www.sonoplot.com/nanometallic-ink 
  32. Sonoplot®, Spotting DNA at a High Resolution for Microarray Fabrication (2016). https://www.sonoplot.com/spotting-dna-at-a-high-resolution-for-microarray-fabrication 
  33. Sonoplot®, Spotting Proteins for an ELISA-Type Microarray Assay (2016). https://www.sonoplot.com/spotting-proteins-for-an-elisatype-microarray-assay 
  34. M. Wajahat, S. Lee, J. H. Kim, J. Ahn, H. H. Sim, J. H. Kim, J. Bae, S. H. Kim, J. Pyo, and S. K. Seol, Addit. Manuf., 60, 103249 (2022). doi: https://doi.org/10.1016/j.addma.2022.103249 
  35. J. Balaban and T. Blecha, 2022 45th International Spring Seminar on Electronics Technology (ISSE) (IEEE, Vienna, Austria, 2022) p. 1-5. doi: https://doi.org/10.1109/ISSE54558.2022.9812794 
  36. A. Molazemhosseini, L. Magagnin, P. Vena, and C. C. Liu, J. Electroanal. Chem., 789, 50 (2017). doi: https://doi.org/10.1016/j.jelechem.2017.01.041 
  37. L. Witczak, M. Chrzanowski, P. Sitarek, M. Lysien, and A. Podhorodecki, ACS Omega, 8, 39217 (2023). doi: https://doi.org/10.1021/acsomega.3c04601