DOI QR코드

DOI QR Code

Model-free deadbeat predictive current control of NIPMVMs considering dead-time effect

  • Junlei Chen (School of Electrical Engineering, Southeast University) ;
  • Ying Fan (School of Electrical Engineering, Southeast University) ;
  • Qiushuo Chen (School of Electrical Engineering, Southeast University)
  • Received : 2023.08.29
  • Accepted : 2024.01.14
  • Published : 2024.06.20

Abstract

This article proposes an adaptive model-free deadbeat predictive current control (MF-DPCC) algorithm for achieving high-performance current control of non-contact integrated permanent magnet vernier motors (NIPMVMs). To address the issue that traditional extended state observer-based deadbeat predictive control (ESO-DPCC) still relies on motor models and parameters, an ultralocal model is introduced to design a model-free current controller. Furthermore, to address the issue that initial gain of the controller depends on the inductance parameter, a gain-adaption algorithm based on the deadbeat characteristic is proposed. In addition, considering the effect of dead-time, a dual-amplitude signal with extremely low duty and amplitude levels has been adopted to improve the adaptive precision of the gain and to achieve deadbeat control of NIPMVMs. The validity of the proposed MF-DPCC is confirmed through experiments conducted on an NIPMVM platform.

Keywords

Acknowledgement

Natural Science Foundation of China, 62173086, Ying Fan.

References

  1. Tong, C., Lang, J., Bai, J., Zheng, P., Ma, D.: Deadbeat-direct torque and flux control of a brushless axial-flux magnetic-geared double-rotor machine for power-splitting HEVs. IEEE Trans. Industr. Electron. 70(9), 8734-8745 (2023)
  2. Johnson, M., Gardner, M., Toliyat, H.: Design and analysis of an axial flux magnetically geared generator. IEEE Trans. Ind. Appl. 53(1), 97-105 (2017)
  3. Chen, J., Fan, Y., Cheng, M., et al.: Parameter-free ultralocal model-based deadbeat predictive current control for pmvms using finite-time gradient method. IEEE Trans. Industr. Electron. 70(6), 5549-5559 (2023)
  4. Chen, Y., Zhou, Y.: Active disturbance rejection and ripple suppression control strategy with model compensation of single-winding bearingless flux-switching permanent magnet motor. IEEE Trans. Industr. Electron. 69(8), 7708-7719 (2022)
  5. Chen, J., Fan, Y., Wang, W., Lee, C.H.T., Wang, Y.: Sensorless control for SynRM drives using a pseudo-random high-frequency triangular-wave current signal injection scheme. IEEE Trans. Power Electron. 37(6), 7122-7131 (2022)
  6. Gao, J., Gong, C., Li, W., Liu, J.: Novel compensation strategy for calculation delay of finite control set model predictive current control in PMSM. IEEE Trans. Industr. Electron. 67(7), 5816-5819 (2020)
  7. Xie, H., Wang, F., Xun, Q., He, Y., Rodriguez, J., Kennel, R.: A low-complexity gradient descent solution with backtracking iteration approach for finite control set predictive current control. IEEE Trans. Industr. Electron. 69(5), 4522-4533 (2022)
  8. Saeed, M.S.R., Song, W., Yu, B., Xie, Z., Feng, X.: Low-Complexity deadbeat model predictive current control for open-winding PMSM drive with zero-sequence current suppression. IEEE Trans. Transp. Electrific. 7(4), 2671-2682 (2021)
  9. Saeed, M.S.R., Song, W., Yu, B., Wu, X.: Low-complexity deadbeat model predictive current control with duty ratio for five-phase PMSM drives. IEEE Trans. Power Electron. 35(11), 12085-12099 (2020)
  10. Jiang, Y., Mu, C., Liu, Y.: Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system. IEEE Trans. Veh. Technol. 67(1), 251-263 (2018)
  11. Wang, L., Zhang, S., Zhang, C., Zhou, Y.: An improved deadbeat predictive current control based on parameter identification for PMSM. IEEE Trans. Transp. Electrific. (2023). https://doi.org/10.1109/TTE.2023.3296700
  12. Xia, C., Wang, M., Song, Z., et al.: Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation. IEEE Trans. Industr. Inf. 8(3), 459-471 (2012)
  13. Zhang, Q., Fan, Y., Mao, C.: A gain design method for a linear extended state observers to improve robustness of deadbeat control. IEEE Trans. Energy Convers. 35(4), 2231-2239 (2020)
  14. Fliess, M., Join, C.: Model-free control. Int. J. Control. 86(12), 2228-2252 (2013)
  15. Zhou, Y., Li, H., Yao H.: Model-free control of surface mounted PMSM drive system. presented at the 2016 IEEE International Conference on Industrial Technology (ICIT), (2016)
  16. Xu, L., Chen, G., Li, Q.: Ultra-local model-free predictive current control based on nonlinear disturbance compensation for permanent magnet synchronous motor. IEEE Access 8, 127690-127699 (2020)
  17. Mousavi, M., Davari, S., Nekoukar, V., et al.: A robust torque and flux prediction model by a modified disturbance rejection method for finite-set model-predictive control of induction motor. IEEE J. Emerg. Sel. Top. Power Electron. 36(8), 9322-9333 (2021)
  18. Chen, Y., Wei, Y., Wang, Y.: On 2 types of robust reaching laws. Int. J. Robust Nonlinear Control 28(6), 2651-2667 (2018)