DOI QR코드

DOI QR Code

전기자동차 배터리를 활용한 공장의 에너지 관리 방안 제안

Proposal of a Factory Energy Management Method Using Electric Vehicle Batteries

  • 박남기 (국립창원대학교 전기공학과) ;
  • 이석주 (국립창원대학교 메카트로닉스연구원) ;
  • 고병수 (국립창원대학교 메카트로닉스연구원) ;
  • 딘민차우 (국립창원대학교 메카트로닉스연구원) ;
  • 이준엽 (국립창원대학교 전기공학과) ;
  • 박민원 (국립창원대학교 전기공학과)
  • Nam-Gi Park ;
  • Seok-Ju Lee ;
  • Byeong-Soo Go ;
  • Minh-Chau Dinh ;
  • Jun-Yeop Lee ;
  • Minwon Park
  • 투고 : 2024.03.26
  • 심사 : 2024.06.04
  • 발행 : 2024.06.30

초록

공장의 에너지 효율을 높이는 방안 중 공정 스케줄링은 제조 공정에서 자원을 최적으로 할당하여 제품의 생산 계획을 수립하는 활동이다. 그러나 야간 근로가 불가피한 경우에는 이러한 전략이 효과적으로 적용되지 않을 수 있다. 또한, 생산 요구량의 지속적인 변화로 인해 실제 공장에서의 적용에 어려움이 있다. 최근에는 전기자동차의 보급이 급증함에 따라 전기자동차 배터리를 에너지 저장 시스템으로 활용하는 기술이 주목을 받고 있다. 이러한 배터리를 활용한 기술은 공장 에너지 관리를 위한 대안이 될 수 있다. 본 논문에서는 전기자동차 배터리를 활용한 공장 에너지 관리 방안을 제안한다. 제안된 방안은 전기자동차 배터리 충전 상태 및 TOU(Time-of-use)를 고려하여 PSCAD/EMTDC 소프트웨어에서 분석된다. 제안된 방안은 예측된 전력 사용량과 TOU를 고려하여 수립된 공정 스케줄링과 비교 분석된다. 결과적으로 공정 스케줄링은 하루에 4,152원, 제안된 방안은 7,286원의 전기 요금을 절감하였다. 본 논문을 통해 공장 에너지 관리를 위해 전기자동차 배터리 활용 가능성을 확인할 수 있었다.

Increasing energy efficiency in factories is an activity aimed at optimizing resource allocation in manufacturing processes to establish production plans. However, this strategy may not apply effectively when night shifts are unavoidable. Additionally, continuous fluctuations in production requirements pose challenges for its implementation in the factory. Recently, with the rapid proliferation of electric vehicles (EVs), technology utilizing electric vehicle batteries as energy storage systems has gained attention. Technology using these batteries can be an alternative for factory energy management. In this paper, a factory energy management method using EV batteries is proposed. The proposed method is analyzed using PSCAD/EMTDC software, considering the state of charge of EV batteries and Time-of-Use (TOU) rates. The proposed method was compared with production scheduling established considering predicted power usage and TOU rates. As a result, production scheduling saved 4,152 KRW per day, while the proposed method saved 7,286 KRW in electricity costs. Through this paper, the possibility of utilizing EV batteries for factory energy management has been demonstrated.

키워드

과제정보

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2022S1A5C2A03093617)

참고문헌

  1. Amalou, I., Mouhni, N. and Abdali, A. (2022). Multivariate Time Series Prediction by RNN Architectures for Energy Consumption Forecasting, Energy Reports, 8(9), 1084-1091, https://doi.org/10.1016/j.egyr.2022.07.139.
  2. Himanshu, B. (2014). Analysis and Mitigation of Impacts of Plug-In Electric Vehicles on Distribution System During Faults, MS. Thesis, Graduate School of Clemson University, State of South Carolina, United States.
  3. Kim, S. H., Doh, Y. M., Heo, T. W. and Lee W. (2023). Economic Analysis of a Redox Flow Batteries-Based Energy Storage System for Energy Savings in Factory Energy Management System, batteries, 9(8), 418, https://doi.org/10.3390/batteries9080418.
  4. Lee, S. J. and Dao, V. Q. (2024). Energy-Effic ient Operation Simulation of Factory HVAC System Based on Machine Learning, Journal of Korea Society of Industrial Information Systems, 29(2), 47-54, http://dx.doi.org/10.9723/jksiis.2024.29.2.047
  5. Lee, W. C., Kim, Y. S., Kim, J. M. and Lee, C. K. (2020). Forecasting of Iron Ore Prices Using Machine Learning, J ournal of Korea Society of Industrial Information Systems, 25(2), 57-72, https://doi.org/10.9723/jksiis.20.25.2.057.
  6. Liu, C., Chau, K. T., Wu, D. and Gao, S. (2013). Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies, Proceedings of the IEEE, 101(11), 2409-2427, 10.1109/JPROC.2013.2271951.
  7. Mahmud, K., Town, G. E., Morsalin, S., Hossain, M. J. (2018). Integration of Electric Vehicles and Management in the Internet of Energy, Renewable and Sustainable Energy Reviews, 82(3), 4179-4203, https://doi.org/10.1016/j.rser.2017.11.004.
  8. Ngo, M. T., Kim, C. H., Dinh, M. C. and Park, M. W. (2023). Comparison of the Effectiveness of Various Neural Network Models Applied to Wind Turbine Condition Diagnosis, J ournal of Korea Society of Industrial Information Systems, 28(5), 77-87, https://doi.org/10.9723/jksiis.2023.28.5.077.
  9. Pearre, N. S. and Ribberlink, H. (2019). Review of Research on V2X Technologies, Strategies, and Operations, Renewable and Sustainable Energy Reviews, 105, 61-70, https://doi.org/10.1016/j.rser.2019.01.047.
  10. Sousa, T. J. C., Monteiro, V., Fernandes, J. C. A., Couto, C., Melendez, A. A. N. and Afonso, J. L. (2018). New Perspectives for Vehicle-to-Vehicle (V2V) Power Transfer, IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Oct. 21-23, Omni Shoreham, USA.
  11. Tremblay, O., Dessaint, L. and Dekkiche, A. (2007). A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles, 2007 IEEE Vehicle Power and Propulsion Conference, Sept. 9-12, Arlington, TX, USA.
  12. Vadi, S., Bayindir, R., Colak, A. M. and Hossain, E. (2019). A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies, Energies, 12(19), 3748, https://doi.org/10.3390/en12193748.
  13. Wang, J., Du, Y. and Wang, J. (2020). LSTM Based Long-Term Energy Consumption Prediction with Periodicity, Energy, 197(9). https://doi.org/10.1016/j.energy.2020.117197.
  14. Yang, L., Dong, C., Johnny Wan, C. L. and Ng, C. T. (2013). Electricity Time-of-Use Tariff with Consumer Behavior Consideration, International Journal of Production Economics, 146(2), 402-410, https://doi.org/10.1016/j.ijpe.2013.03.006.