DOI QR코드

DOI QR Code

Crack Analysis using Constrained Delaunay Triangulation Crack Mesh Generation Method

Constrained Delaunay Triangulation 균열 요소 생성 기법을 이용한 균열 해석

  • Yeounhee Kim (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Yeonhi Kim (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Jungsun Park (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 김연희 (한국항공대학교 대학원 항공우주 및 기계공학과 ) ;
  • 김연희 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 박정선 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2024.01.25
  • Accepted : 2024.04.22
  • Published : 2024.06.30

Abstract

Aircraft engines are exposed to high temperatures, high pressures, and stress caused by the rotation of the turbine shaft during flight. These loads can result in microcracks both on the inside and outside surfaces of the structure. Consequently, this can lead to structural defects and negatively impact the lifespan of the parts. To proactively prevent these defects, a finite element analysis is carried out to identify cracks. However, this process is time-consuming and requires significant effort due to the repetitive nature of crack modeling. This study aims to develop a crack modeling method based on the finite element model. To achieve this, the Constrained Delaunay Triangulation (CDT) technique is employed to triangulate the space while considering limitations on point connections. The effectiveness of this method is validated by comparing stress intensity factors for semi-elliptical cracks in plates and cylindrical vessels. This approach proves to be a valuable tool for crack analysis studies.

항공기 엔진은 비행 중 고온, 고압과 터빈 축의 회전으로 인한 응력이 발생한다. 이러한 하중으로 인해 구조 내/외부에 미세한 균열이 발생할 수 있다. 이는 구조적 결함으로 이어져 부품의 수명에 악영향을 줄 수 있다. 이러한 현상을 사전에 방지하고자 균열에 대한 유한요소해석이 진행된다. 하지만 이 과정은 반복적인 균열 모델링이 이루어져 많은 시간과 노력을 수반한다. 그러므로 본 논문에서는 유한요소모델 기반의 균열 모델링 기법을 개발하였다. 균열 모델링에는 점 간의 연결에 제한을 가지고 공간을 삼각 분할하는 Constrained Delaunay Triangulation(CDT)을 사용하였다. 반타원 균열을 가지는 평판과 원통형 용기에 대한 응력확대계수 비교를 통해 기법을 검증하였으며, 균열 해석에 유용함을 보였다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(과제번호: 2022R1A6A1A03056784)

References

  1. S. K. Bhaumik, M. Sujata and M. A. Venkataswamy, "Fatigue failure of aircraft components," Engineering Failure Analysis, vol. 15, pp. 675-694, 2008. 
  2. B. Kestic, B. Rasuo, D. Trifkovic, I. Radisavljevic, Z. Rajic and M. Dinulovic, "Failure analysis of an aircraft engine cylinder head," Engineering Failure Analysis, vol. 32, pp. 1-15, 2013. 
  3. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 4th Ed., CRC Press, 2017. 
  4. J. S. Lee, "Development of automated stress intensity factor analysis system for three-dimensional cracks," Journal of the Korean Society of Precision Engineering, vol. 14, no. 6, pp. 64-73, 1997. 
  5. P. Dechaumphai, S. Phongthanapanich and T. Sricharoenchai, "Combined Delaunay triangulation and adaptive finite element method for crack growth analysis," Acta Mechanica Sinica, vol. 19, no. 2, pp. 162-171, 2013. 
  6. D. Bremberg and G. Dhondt, "Automatic crack-insertion for arbitrary crack growth," Fracture Mechanics, vol. 75, no. 3~4, pp. 404-416, 2008. 
  7. N. Akkiraju, H. Edelsbrunner, M. Facello, P. Fu, E. P. Mucke and C. Vaerla, "Alpha Shapes: Definition and software," GCG: International Computational Geometry Software Workshop, pp. 63-66, 1995. 
  8. P. H. Frey and P. L. George, Mesh Generation: Application to Finite Elements, WILEY, 2008. 
  9. G. R. Irwin, "Introduction for part-through crack fatigue life prediction," ASTM STP 687, pp. 11-12, 1979. 
  10. S. K. Chan, I. S. Tuba and W. K. Wilson, "On Finite Element Method in Linear Fracture Mechanics," Engineering Fracture Mechanics, vol. 2, pp. 1-17, 1970. 
  11. E. Pina, "Rotation with Rodrigues' vector," European Journal of Physics, vol. 32, pp. 1171-1178, 2011. 
  12. I. S. Raju and J. C. Jr. Newman, "Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates," Engineering Fracture Mechanics, vol. 11, no. 4, pp. 817-829, 1979. 
  13. I. S. Raju and J. C. Jr. Newman, "Stress-intensity factors for internal and external surface cracks in cylindrical vessels," Journal of Pressure Vessel Technology, vol. 104, no. 4, pp. 293-298, 1982.