DOI QR코드

DOI QR Code

Study on the Mechanical Stability of Red Mud Catalysts for HFC-134a Hydrolysis Reaction

HFC-134a 가수분해를 위한 Red mud 촉매 기계적 안정성 향상에 관한 연구

  • In-Heon Kwak (Korea Institute of Energy Research (KIER)) ;
  • Eun-Han Lee (Korea Institute of Energy Research (KIER)) ;
  • Sung-Chan Nam (Korea Institute of Energy Research (KIER)) ;
  • Jung-Bae Kim (Department of Chemical and Biological Engineering, Korea University) ;
  • Shin-Kun Ryi (Korea Institute of Energy Research (KIER))
  • 곽인헌 (한국에너지기술연구원) ;
  • 이은한 (한국에너지기술연구원) ;
  • 남성찬 (한국에너지기술연구원) ;
  • 김중배 (고려대학교 화공생명공학과) ;
  • 이신근 (한국에너지기술연구원)
  • Received : 2024.04.10
  • Accepted : 2024.05.18
  • Published : 2024.06.30

Abstract

In this study, the mechanical stability of red mud was improved for its commercial use as a catalyst to effectively decompose HFC-134a, one of the seven major greenhouse gases. Red mud is an industrial waste discharged from aluminum production, but it can be used for the decomposition of HFC-134a. Red mud can be manufactured into a catalyst via the crushing-preparative-compression molding-firing process, and it is possible to improve the catalyst performance and secure mechanical stability through calcination. In order to determine the optimal heat treatment conditions, pellet-shaped compressed red mud samples were calcined at 300, 600, 800 ℃ using a muffle furnace for 5 hours. The mechanical stability was confirmed by the weight loss rate before and after ultra-sonication after the catalyst was immersed in distilled water. The catalyst calcined at 800 ℃ (RM 800) was found to have the best mechanical stability as well as the most catalytic activity. The catalyst performance and durability tests that were performed for 100 hours using the RM 800 catalyst showed thatmore than 99% of 1 mol% HFC-134a was degraded at 650 ℃, and no degradation in catalytic activity was observed. XRD analysis showed tri-calcium aluminate and gehlenite crystalline phases, which enhance mechanical strength and catalytic activity due to the interaction of Ca, Si, and Al after heat treatment at 800 ℃. SEM/EDS analysis of the durability tested catalysts showed no losses in active substances or shape changes due to HFC-134a abasement. Through this research, it is expected that red mud can be commercialized as a catalyst for waste refrigerant treatment due to its high economic feasibility, high decomposition efficiency and mechanical stability.

본 연구는 7대 온실가스 중 하나인 HFC-134a를 효과적으로 분해하기 위한 촉매로써 산업 부산물인 red mud를 상업적으로 사용하기 위한 기계적 안정성 향상에 관한 것이다. 알루미늄 공정에서 배출한 산업용 폐기물인 red mud는 분쇄-분취-압축-성형-소성 공정으로 HFC-134a 분해가 가능한 촉매 제조가 가능하였는데, 소성을 통해 촉매 성능 향상 및 기계적 안정성을 확보할 수 있었다. 최적의 열처리 조건을 확인하기 위하여, 펠렛형태로 압축성형한 red mud는 머플퍼니스를 이용하여 300, 600, 800 ℃에서 5시간 소성하여 촉매성능 및 기계적 안정성을 확인하였는데, 기계적 안정성은 증류수에 촉매를 담근 후 초음파 처리 전후 무게 손실률로 확인하였다. 열처리에 따른 촉매성능 및 기계적 안정성을 확인한 결과 800 ℃에서 소성한 촉매(RM 800)가 기계적 안정성은 물론 촉매활성 또한 가장 우수하였다. RM 800 촉매를 사용한 촉매 성능 및 100시간 동안 수행한 내구성 측정 결과 650 ℃에서 1 mol% HFC-134a를 99% 이상 분해하였고, 내구성 측정 기간동안 촉매성능 저하는 관찰할 수 없었다. XRD 분석 결과 800도 소성 후 Ca, Si, 및 Al의 상호작용으로 인해 기계적 강도와 활성 향상에 영향을 미치는 트라이 칼슘알루미네이트와 게레나이트 결정상이 나타났다. 내구성을 측정한 촉매 SEM/EDS 분석 결과 RM 800 촉매는 HFC-134a 분해로 인한 활성물질 저감 및 형상변화가 나타나지 않았다. 본 연구를 통해 산업폐기물인 red mud는 경제성이 매우 높고 분해효율 및 기계적 안정성 또한 매우 높아 폐냉매 처리를 위한 촉매로써 상용화가 가능할 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 산업통상자원부, 한국산업기술진흥원의 월드클래스플러스사업(P0017165)과 한국에너지기술연구원 주요사업(C4-2446-02)을 통해 수행되었습니다.

References

  1. Archambo, M. and Kawatra, S. K., "Red mud Fundamentals and New Avenues for Utilization," Miner. Process. Extr. Metall., 42(7), 427-450 (2021).
  2. CaO, J. L., Yan, Z. L., Deng, Q. F., Wang, Y., Yuan, Z. Y., Sun, G., Jia, T. K., Wang, D. X., Bala, H., and Zhang, Z. Y., "Mesoporous Modified-Red-Mud Supported Ni Catalysts for Ammonia Decomposition to Hydrogen," Int. J. Hydrogen Energy, 39(11), 5747-5755 (2014).
  3. Sushil, S. and Batra, V. S., "Catalytic Application of Red Mud, an Aluminium Industry Waste: A Review," Appl. Catal. B: Environ., 81(1-2), 64-77 (2008).
  4. Wang, S., Ang, H. M., and Tade, M. O., "Novel Application of Red Mud as Coagulant, Adsorbent and Catalyst for Environmentally Benign Process," Chemosphere, 72(11), 1621-1635 (2008).
  5. Alvarez, J., Ordonez, S., Rosal, R., Satre, H., and Diez, F. V., "A New Method for Enhancing the Performance of Red Mud as a Hydrogenation," Appl. Catal. A: Gen., 80(1-2), 399-409 (1999).
  6. Ordonez, S., Satre, H., and Diez F. V., "Characterisation and Deactivation Studies of Sulfided Red Mud used as Catalyst for the Hydrodechlorination of Tetrachloroethylene," Appl. Catal. B: Environ., 29(4), 263-273 (2001).
  7. Ordonez, S., Satre, H., and Diez F. V., "Hydrodechlorination of Tetrachloroethylene over Modified Red Mud: Deactivation Studies and Kinetics," Appl. Catal. B: Environ., 34(3), 213-226 (2001).
  8. Wu, J., Gong, Z., Lu, C., Niu S., Ding, K., Xu, L., and Zhang, K., "Preparation and Performance of Modified Red Mud-Based Catalysts for Selective Catalytic Reduction of NOx with NH3," Catalysts, 8(1), 35 (2018).
  9. Sushil, S. and Batra, V. S., "Modification of Red Mud by Acid Treatment and its Application for CO Removal," J. Hazard. Mater., 203-204, 264-273 (2012).
  10. Paredes, J. R., Ordonez, S., Vega, A., and Diez, F. V., "Catalytic Combustion of Methane over Red Mud-Based Catalysts," Appl. Catal. B: Environ., 47(1), 37-45 (2004).
  11. Paramguru, R. K., Rath, P. C., and Misra, V. N., "Trends in Red Mud Utilization-A Review," Mineral Processing & Extractive Metall. Rev., 26(1), 1-29 (2004).
  12. Sutar, H., Mishra, S. C., Sahoo, S. K., and Maharana, H. S., "Progress of Red Mud Utilization: An Overview," Am. Chem. Sci. J., 4(3), 255-279 (2014).
  13. Ma, Z., Hua, W., Tang, Y., and Gao, Z., "Catalytic Decomposition of CFC-12 over Solid Acids WO3/MXOY (M=Ti, Sn, Fe)," J. Mol. Catal. A: Chem., 159(2), 335-345 (2000).
  14. Chen, C. K., Shiue, A., Huang, D. W., and Chang, C. T., "Catalytic Decomposition of CF4 over Iron Promoted Mesoporous Catalysts," J. Nanosci. Nanotechnol., 14(4), 3202-3208 (2014).
  15. Swamidoss, C. M., Sheraz, M., Anus, A., Jeong, S., Park, Y. K., Kim, Y. M., and Kim, S., "Effect of Mg/Al2O3 and Calcination Temperature on the Catalytic Decomposition of HFC-134a," Catalysts, 9(3), 270 (2019).
  16. Sheraz, M., Anus, A., Le, V. C. T., Swamidoss, C. M. A., and Kim, S., "The Effect of Catalyst Calcination Temperature on Catalytic Decomposition of HFC-134a over γ-Al2O3," Catalysts, 11(9), 1021 (2021).
  17. Karmakar, S. and Greene, H. L., "An Investigation of CFC12 (CCl2F2) Decomposition on TiO2 Catalyst," J. Catal., 151(2), 394-406 (1995).
  18. Kwak, I. H., Lee, E. H., Kim, J. B., Nam, S. C., and Ryi, S. K., "Hydrolysis of HFC-134a using a Red Mud Catalyst to Reuse an Industrial Waste," J. Ind. Eng. Chem., (2024).
  19. Lee, E. H., Kim, T. W., Byun, S., Seo, D. W., Hwang, H. J., Baek, J., Jeong, E. S., Kim, H., and Ryi, S. K., "A Study on γ-Al2O3 Catalyst for N2O Decomposition," Clean Technol., 29(2), 126-134 (2023).
  20. Wu, C. S. and Liu, D. Y., "Mineral Phase and Physical Properties of Red Mud Calcined at Different Temperatures," J. Nanomater., 2012, 6 (2012).
  21. Yoon, J. K., Im, Y. S., and Shin, M., "A Numerical Study on Optimum Ventilation Conditions for the Task of Exchange Catalyst," J. Korean So. Occup. Environ. Hyg., 28(2), 190-199 (2018).
  22. Huh, B., Park, H. K., and Lee, C. H., "A Study on the Remanufacturing of the Waste Three-way Catalysts," Clean Technol., 15(3), 147-153 (2009).
  23. Salavati, H., Tangestaninejad, S., Moghadam, M., Mirkhani, V., and Mohammadpoor-Baltork, I., "Zirconia-Supported Keggin Phosphomolybdovanadate Nanocomposite: A Heterogeneous and Reusable Catalyst for Alkene Epoxidation under Thermal and Ultrasonic Irradiation Conditions," Comptes Rendus. Chimie, 14(6), 588-596 (2011).
  24. Han, T. U., Yoo, B. S., Kim, Y. M., Hwang, B. A., Sudibya, G. L., Park, Y. K., and Kim, S. D., "Catalytic Conversion of 1,1,1,2-Tetrafluoroethane (HFC-134a)," Korean J. Chem. Eng., 35(8), 1611-1619 (2018).
  25. Kim, M. J., Kim, Y., Youn, J. R., Choi, I. H., Hwang, K. R., Kim, S. G., Park, Y. K., Moon, S. H., Lee, K. B., and Jeon, S. G., "Effects of Sulfuric Acid Treatment on the Performance of Ga-Al2O3 for the Hydrolytic Decomposition of 1,1,1,2-Tetrafluoroethane (HFC-134a)," Catalysts, 10(7), 766 (2020).
  26. Jeong, S., Sudibya, G. L., Jeon, J. K., Kim, Y. M., Swamidoss, C. M. A., and Kim, S., "The Use of a γ-Al2O3 and MgO Mixture in the Catalytic Conversion of 1,1,1,2-Tetrafluoroethane (HFC-134a)," Catalysts, 9(11), 901 (2019).
  27. Zhang, W., Zhou, X., Sun, H., Li, Z., Wang, K., Zang, P., Han, W., Li, W., Li, Y., and Tang, H., "Catalytic Performance of Alumina Catalysts with Diffferent Surface Properties for the Dehydrofluorination of HFC-134a (1,1,1,2-Tetrafluoroethance)," Chem. Phys. Lett., 836, 141027 (2024).
  28. Liu, W. N., Chang, J., Zhu, Y. Q., and Zhang, M., "Effect of Tricalcium Aluminate on the Properties of Tricalcium Silicate-Tricalcium Aluminate Mixtures: Setting Time, Mechanical strength and Biocompatibility," Int. Endod. J., 44(1), 41-50 (2011).
  29. Kashiwaya, Y., Toishi, K., Kaneki, Y., and Yamakoshi, Y., "Catalytic Effect of Slags on the Formation of Bio-diesel Fuel," ISIJ Int., 47(12), 1829-1831 (2007).
  30. Wang, B., Li, S., Tian, S., Feng, R., and Meng, Y., "A New Solid Base Catalyst for the Transesterification of Rapeseed Oil to Biodiesel with Methanol," Fuel, 104, 698-703 (2013).
  31. Kang, J. K. and Musgrave, C. B., "The Mechanism of HF/H2O Chemical Etching of SiO2," J. Chem. Phys., 116(1), 275-280 (2002).