DOI QR코드

DOI QR Code

Combinational effects of sesquiterpene lactones isolated from bay laurel (Laurus nobilis) leaves with antibiotics against fish pathogenic bacteria

어류 병원성 세균에 대한 월계수(Laurus nobilis) 잎 유래 sesquiterpene lactone과 수산용 항생제의 병용효과

  • Jae-Woong Lim (Pathology Research Division, National Institute of Fisheries Science) ;
  • Ji-Seok Choi (Department of Aqualife Medicine, Chonnam National University) ;
  • Ayman Turk (College of Pharmacy, Chungbuk National University) ;
  • Mi Kyeong Lee (College of Pharmacy, Chungbuk National University) ;
  • Do-Hyung Kim (Department of Aquatic Life Medicine, Pukyong National University) ;
  • So Young Kang (Department of Aqualife Medicine, Chonnam National University)
  • 임재웅 (국립수산과학원 병리연구과) ;
  • 최지석 (전남대학교 수산생명의학과) ;
  • 투르크 아이만 (충북대학교 약학대학) ;
  • 이미경 (충북대학교 약학대학) ;
  • 김도형 (부경대학교 수산생명의학과) ;
  • 강소영 (전남대학교 수산생명의학과)
  • Received : 2024.05.28
  • Accepted : 2024.06.11
  • Published : 2024.06.30

Abstract

This study is a report on combinational effects between four sesquiterpene lactones (SLs) from bay laurel (Laurus nobilis) leaves, and oxytetracycline (OTC) or amoxicillin (AMX) against four fish pathogenic bacteria such as Vibrio anguillarum, V. harveyi, Edwardsiella tarda, and Streptococcus iniae. Individually, four SLs exerted little antibacterial activity against fish pathogenic bacteria. However, when combined with OTC or AMX, they showed synergistic interaction against pathogenic bacteria. Especailly, zaluzanin C (1) reduced the MIC of OTC (or AMX) eight-fold. Our results showed that combinations of SLs with antibiotics (ABTs) are more effective than ABTs alone to control pathogenic bacteria. The highest synergistic effect was observed when zaluzanin C (1) was combined with OTC or AMX against V. harvey or S. iniae, displaying significant reductions of MICs up to 8-fold (0.125 to 0.015 ㎍/mL and 0.0078 to 0.0009 ㎍/mL). In addition, zaluzanin C (1) improved the antibiotic potency of OTC against OTC resistant V. harveyi (250 ㎍/mL to 62.5 ㎍/mL). Synergism between ABTs and phytochemical such as SLs could be a therapeutically helpful concept to improve the efficacy of ABTs and prevent antibiotic resistance. These results suggest that SLs can be used as an alternative to reduce antibiotic resistance in aquaculture.

Keywords

Acknowledgement

이 성과는 정부의 재원으로 한국연구재단(NRF-2019R1F1A1059303) 및 국립수산과학원 수산생물 질병 특성 연구(R2024054)의 지원을 받아 수행된 연구임.

References

  1. Aktas, G., & Derbentli, S.: In vitro activity of daptomycin combinations with rifampicin, gentamicin, fosfomycin and fusidic acid against MRSA strains. J. Glob. Antimicrob. Resist., 10:223-227, 2017. https://doi.org/10.1016/j.jgar.2017.05.022
  2. Anzano, A., de Falco, B., Grauso, L., Motti, R., & Lanzotti, V.: Laurel, Laurus nobilis L.: a review of its botany, traditional uses, phytochemistry and pharmacology. Phytochem. Rev., 1-51, 2022. https://doi.org/10.1007/s11101-021-09791-z
  3. Bachelier, A., Mayer, R., & Klein, C. D.: Sesquiterpene lactones are potent and irreversible inhibitors of the antibacterial target enzyme MurA. Bioorg. Med. Chem. Lett., 16:5605-5609, 2006. https://doi.org/10.1016/j.bmcl.2006.08.021
  4. Boyd, C. E., D'Abramo, L. R., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., McNevin, A. A., Tacon, A. G., Teletchea, F., & Tomasso Jr, J. R.: Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc., 51:578-633, 2020. https://doi.org/10.1111/jwas.12714
  5. Chukwujekwu, J., Van Heerden, F., & Van Staden, J.: Synergistic properties of sesquiterpene lactones isolated from Centratherum punctatum Cass. in combination with ampicillin against beta-lactam-resistant Gram-negative bacteria. S. Afr. J. Bot., 117:79-82, 2018. https://doi.org/10.1016/j.sajb.2018.04.003
  6. Coronado-Aceves, E. W., Velazquez, C., Robles-Zepeda, R. E., Jimenez-Estrada, M., Hernandez-Martinez, J., Galvez-Ruiz, J. C., & Garibay-Escobar, A.: Reynosin and santamarine: two sesquiterpene lactones from Ambrosia confertiflora with bactericidal activity against clinical strains of Mycobacterium tuberculosis. Pharm. Biol., 54:2623-2628, 2016. https://doi.org/10.3109/13880209.2016.1173067
  7. Dobroslavic, E., Repajic, M., Dragovic-Uzelac, V., & Elez Garofulic, I.: Isolation of Laurus nobilis leaf polyphenols: A review on current techniques and future perspectives. Foods, 11:235, 2022. https://doi.org/10.3390/foods11020235
  8. Fischer, N. H., Lu, T., Cantrell, C. L., Castaneda-Acosta, J., Quijano, L., & Franzblau, S. G.: Antimycobacterial evaluation of germacranolides in honour of professor GH Neil Towers 75th birthday. Phytochemistry, 49:559-564, 1998. https://doi.org/10.1016/S0031-9422(98)00253-2
  9. Hemaiswarya, S., Kruthiventi, A. K., & Doble, M.: Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15:639-652, 2008. https://doi.org/10.1016/j.phymed.2008.06.008
  10. Kang, S. Y., Kang, J. Y., Kim, S.-Y., Kim, D.-H., & Oh, M.-J.: Antimicrobial activities of alkyl gallates alone and in combination with antibiotics against the fish pathogenic bacteria Edwardsiella tarda and Vibrio anguillarum. J. Kor. Fish. Soc., 41:188-192, 2008. https://doi.org/10.5657/kfas.2008.41.3.188
  11. Lim, J.-W., Jo, Y. H., Choi, J.-S., Lee, M. K., Lee, K. Y., & Kang, S. Y.: Antibacterial Activities of Prenylated Isoflavones from Maclura tricuspidata against Fish Pathogenic Streptococcus: Their Structure-Activity Relationships and Extraction Optimization. Molecules, 26:7451, 2021. https://doi.org/10.3390/molecules26247451
  12. Lim, J.-W., Shin, S.-M., Jung, S.-J., Lee, M. K., & Kang, S. Y.: Optimization of antibacterial extract from lacquer tree (Rhus verniciflua Stokes) using response surface methodology and its efficacy in controlling edwardsiellosis of olive flounder (Paralichthys olivaceus). Aquaculture, 502:40-47, 2019. https://doi.org/10.1016/j.aquaculture.2018.12.008
  13. Lulijwa, R., Rupia, E. J., & Alfaro, A. C.: Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev. Aquac., 12:640-663, 2020. https://doi.org/10.1111/raq.12344
  14. Snuossi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G., & De Feo, V.: Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21:1414, 2016. https://doi.org/10.3390/molecules21101414
  15. Sohn, H., Kim, J., Jin, C., Lee, J.: Identification of Vibrio species isolated from cultured olive flounder (Paralichthys olivaceus) in Jeju Island, South Korea. Fish Aquat. Sci. 22:1-8, 2019. https://doi.org/10.1186/s41240-019-0129-0
  16. Sultana, N., Afolayan, A., & Bhuiyan, R. A.: Antimicrobial compounds from the shoots of Arctotis arctotoides. Bangladesh J. Sci. Ind. Res., 43:89-96, 2008. https://doi.org/10.3329/bjsir.v43i1.860
  17. Swamy, J. M., Patil, A., Biradar, P., Yadav, S. R., Bhosle, R., & Tipale, J.: Exploring the Therapeutic and Nutritional Significance of Bay Laurel (Laurus nobilis) as a Feed Additive in Aquaculture. Int. J. Environ. Clim., 13:192-197, 2023. https://doi.org/10.9734/ijecc/2023/v13i123675
  18. Turk, A. Chemical constituents of Laurus nobilis and their NF-κB inhibitory activity. Chungbuk National University, 2017
  19. Turk, A., Ahn, J. H., Jo, Y. H., Song, J. Y., Khalife, H. K., Gali-Muhtasib, H., Kim, Y., Hwang, B. Y., & Lee, M. K.: NF-κB inhibitory sesquiterpene lactones from Lebanese Laurus nobilis. Phytochem. Lett., 30:120-123, 2019. https://doi.org/10.1016/j.phytol.2019.02.003
  20. Won, K. M., & Park, S. I.: Pathogenicity of Vibrio harveyi to cultured marine fishes in Korea. Aquaculture, 285:8-13, 2008. https://doi.org/10.1016/j.aquaculture.2008.08.013