DOI QR코드

DOI QR Code

Natural killer cell activity of olive flounder Paralichthys olivaceus following intramuscular injection of toltrazuril derivative N-(4-(4-Fluorophenoxy)-3-methylphenyl) acetamide

톨트라주릴 합성유도체, N-(4-(4-Fluorophenoxy)-3-methylphenyl) acetamide 근육 주사에 따른 넙치의 자연살해세포(Natural killer cell) 활성 검사

  • Sang Hyup Park (Department of Aquatic Life Medicine, Gangneung-Wonju National University) ;
  • Jung Eui Kim (Department of Aquatic Life Medicine, Gangneung-Wonju National University) ;
  • Jeong-wan Do (Pathology Division, National Institute of Fisheries Science) ;
  • Ah Ran Kim (Pathology Division, National Institute of Fisheries Science) ;
  • Yi Kyung Kim (Department of Aquatic Life Medicine, Gangneung-Wonju National University)
  • 박상협 (강릉원주대학교 수산생명의학과) ;
  • 김정의 (강릉원주대학교 수산생명의학과) ;
  • 도정완 (국립수산과학원 병리연구과) ;
  • 김아란 (국립수산과학원 병리연구과) ;
  • 김이경 (강릉원주대학교 수산생명의학과)
  • Received : 2024.05.23
  • Accepted : 2024.06.12
  • Published : 2024.06.30

Abstract

This study assessed the impact of the toltrazuril derivative N-(4-(4-Fluorophenoxy)-3-methylphenyl) acetamide on natural cytotoxic cell (NCC) activity of olive flounder, Paralichthys olivaceus spleen. Five groups of fifteen olive flounder, comprising non-treatment and vehicle control groups, were randomly assigned. N-(4-(4-Fluorophenoxy)-3-methylphenyl) acetamide was injected intramuscularly at doses of 120, 150 and 200 mg/kg body weight; a total of ten injections were given over the course of 30 days. The NK activity of flounder splenic cells was evaluated against YAC-1, mouse lymphoma cells or HINAE cells with a choice of co-cultivation times of 4 or 18 hrs. In case of YAC-1 co-culture we observed a significant increase in cytotoxicity at a dose of 200 mg/kg, up to 3.06 times more than that of the control group. Only the trial with the 4 hrs co-culture produced a significant difference in the HINAE cell experiment; the experimental group at the 200 mg/kg dose exhibited the maximum cytotoxicity, demonstrating 2.3 times more cytotoxicity than the control group. Furthermore, the expression level of IL-12b was markedly induced in the group with 200 mg/kg, which was 6.62 times greater than that of the control group. In terms of the altered NK cell activity, the repeated high doses of N-(4-(4-Fluorophenoxy)-3-methylphenyl) acetamide can cause changes in the normal performance of immune function.

본 연구에서는 넙치(Paralichthys olivaceus)에서 N-(4-(4-Fluorophenoxy)-3-methylphenyl) acetamide 주사 투여에 따른 넙치 비장의 NK cell 활성을 평가하기 위하여 120, 150, 200 mg/kg 용량으로 설정하고 3일에 1회, 30일 동안 총 10회의 주사를 투여하였다. 표적세포(Target cell)로는 쥐의 임파종 세포인 YAC-1 cell과 넙치의 HINAE cell을 사용하였고, 넙치 비장의 NK cell과의 공배양 시간은 4시간과 18시간을 선정하여 실험을 실시하였다. YAC-1 cell을 사용하여 실험의 경우 4시간과 18시간 공배양 실험 모두 200 mg/kg 용량 구간의 실험군에서 가장 높은 세포독성을 대조군 대비 최대 3.06배 높은 세포독성을 보였다. HINAE cell을 사용한 실험의 경우 4시간 공배양한 실험에서만 유의적인 차이를 보였으며, YAC-1 cell과 마찬가지로 200 mg/kg 용량 구간의 실험군에서 가장 높은 세포 독성을 보여 대조군 대비 2.3배 높은 세포독성을 보였다. 추가적으로 넙치의 두신 조직에서 IL-12b의 발현량을 확인하였고, 세포독성 실험과 일치하는 결과를 보였고, 200 mg/kg 용량 구간의 실험군에서 가장 높은 발현량을 보여 대조군과 비교하여 6.62배 높은 수치를 보였다. 이러한 결과는 N-(4-(4-Fluorophenoxy)-3-methylphenyl) acetamide가 넙치의 NK cell 활성에 영향을 줄 수 있다는 것을 보여준다.

Keywords

Acknowledgement

이 논문은 국립수산과학원(P2023202, 넙치쿠도아충 저감화 연구)의 지원에 의해 진행되었음.

References

  1. Ai, L., Sun, H., Wang, F., Chen, R. and Guo, C.: Determination of diclazuril, toltrazuril and its two metabolites in poultry tissues and eggs by gel permeation chromatography-liquid chromatography-tandem mass spectrometry. Journal of chromatography B, 879 (20), 1757-1763, 2011. https://doi.org/10.1016/j.jchromb.2011.04.021.
  2. Alam, M.S., Teshima, S.I., Ishikawa, M. and Koshio, S.: Methionine requirement of juvenile Japanese flounder Paralichthys olivaceus. Journal of the World Aquaculture Society, 31(4), 618-626, 2000. https://doi.org/10.1111/j.1749-7345.2000.tb00911.
  3. Athanassopoulou, F., Karagouni, E., Dotsika, E., Ragias, V., Tavla, J., Christofilloyanis, P. and Vatsos, I.: Efficacy and toxicity of orally administratedanticoccidial drugs for innovative treatments of Myxobolus sp. infection in Puntazzo puntazzo. Diseases of Aquatic Organisms, 62(3), 217-226, 2004. https://doi.org/10.3354/dao062217.
  4. Balicka-Ramisz, A.: The influence of coccidiostats on the course of coccidiosis and production results in an industrial rabbit farm. Wiadomosci Parazytologiczne, 45(2), 193-198, 1999.
  5. Biron, C.A., Nguyen, K.B., Pien, G.C., Cousens, L.P. and Salazar-Mather, T.P.: Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annual review of immunology, 17(1), 189-220, 1999. https://doi.org/10.1146/annurev.immunol.17.1.189.
  6. Brandstadter, J.D. and Yang, Y.: Natural killer cell responses to viral infection. Journal of innate immunity, 3(3), 274-279, 2011. https://doi.org/10.1159/000324176.
  7. Broussas, M., Broyer, L. and Goetsch, L.: Evaluation of antibody-dependent cell cytotoxicity using lactate dehydrogenase (LDH) measurement. Glycosylation Engineering of Biopharmaceuticals: Methods and Protocols, 305-317, 2013. https://doi.org/10.1007/978-1-62703-327-5_19.
  8. Cerwenka, A. and Lanier, L.L.: Natural killer cell memory in infection, inflammation and cancer. Nature Reviews Immunology, 16(2), 112-123, 2016. https://doi.org/10.1038/nri.2015.9.
  9. Chen, X., Wang, P., Zhao, C., Yan, L., Lin, H. and Qiu, L.: Molecular characterization and functional analysis of IL-12p40 from Chinese sea bass (Lateolabrax maculatus) under biotic and abiotic stresses. Fish & shellfish immunology, 83, 373-385, 2018. https://doi.org/10.1016/j.fsi.2018.09.038.
  10. Cho, K.W. and Baik, R.: Performance Analysis of Deep Learning-based Paralichthys Olivaceus Disease Symption Classification Model. The Journal of the Korea Contents Association, 23(12), 96-106, 2023. https://doi.org/10.5392/JKCA.2023.23.12.096.
  11. Cretney, E., Takeda, K., Yagita, H., Glaccum, M., Peschon, J.J. and Smyth, M.J.: Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. The Journal of Immunology, 168(3), 1356-1361, 2002. https://doi.org/10.4049/jimmunol.168.3.1356.
  12. Eiras, J.C., Saraiva, A. and Cruz, C.: Synopsis of the species of Kudoa Meglitsch, 1947 (Myxozoa: Myxosporea: Multivalvulida). Systematic Parasitology, 87, 153-180, 2014. https://doi.org/10.1007/s11230-013-9461-4.
  13. Giulietti, L., Nedberg, H.J., Karlsbakk, E., Marathe, N.P., Storesund, J.E., Maehle, S. and Levsen, A.: Distribution of Kudoa thyrsites (Cnidaria, Myxozoa) myoliquefactive stages in Northeast Atlantic mackerel (Scomber scombrus) inferred from qPCR and histology. Parasitology Research, 121(8), 2325-2336, 2022. https://doi.org/10.1007/s00436-022-07575-8.
  14. Esteban, M.A., Meseguer, J., Tafalla, C. and Cuesta, A.: NK-like and oxidative burst activities are the main early cellular innate immune responses activated after virus inoculation in reservoir fish. Fish & Shellfish Immunology, 25(4), 433-438, 2008. https://doi.org/10.1016/j.fsi.2008.07.001.
  15. Fang, F., Xiao, W. and Tian, Z.: NK cell-based immunotherapy for cancer. In Seminars in immunology (Vol. 31, pp. 37-54). Academic Press, 2017. https://doi.org/10.1016/j.smim.2017.07.009.
  16. Figueiredo, N., Matos, B., Diniz, M., Branco, V. and Martins, M.: Marine fish primary hepatocyte isolation and culture: new insights to enzymatic dissociation pancreatin digestion. International Journal of Environmental Research and Public Health, 18(4), 1380, 2021. https://doi.org/10.3390/ijerph18041380.
  17. Furr, M. and Kennedy, T.: Cerebrospinal fluid and blood concentrations of toltrazuril 5% suspension in the horse after oral dosing. Veterinary therapeutics: research in applied veterinary medicine, 1(2), 125-132, 2000.
  18. Grudzien, M. and Rapak, A.: Effect of natural compounds on NK cell activation. Journal of Immunology Research, 2018. https://doi.org/10.1155/2018/4868417.
  19. Haberkorn, A.: Studies on the activity spectrum of toltrazuril, a new anticoccidial agent. Veterinary Medical Review, 1, 22-32, 1987. https://doi.org/10.1111/j.1439-0450.1988.tb00478.x.
  20. Haberkorn, A., Friis, C.W., Schulz, H.P., Meister, G. and Feller, W.: Control of an outbreak of mouse coccidiosis in a closed colony. Laboratory animals, 17(1), 59-64, 1983. https://doi.org/10.1258/002367783781070803.
  21. Heichler, C., and Wolf, P.: DETERMINE THE OPTIMAL AMOUNT OF CELL-TAK TO IMMOBILIZE SUSPENSION CELLS FOR FURTHER ANALYSIS ON THE CYRIS® PLATFORM., 2022.
  22. Jost, S. and Altfeld, M.: Control of human viral infections by natural killer cells. Annual review of immunology, 31, 163-194, 2013. https://doi.org/10.1146/annurev-immunol-032712-100001
  23. Jung, S.H(2021). Korea. Patent No. 10-2234530. Busan: National Institute of Fisheries Science.
  24. Kang, J.H., Kim, W.J. and Lee, W.J.: Genetic linkage map of olive flounder, Paralichthys olivaceus. International Journal of Biological Sciences, 4(3), 143, 2008. https://doi.org/10.7150/ijbs.4.143.
  25. Kawai, T., Sekizuka, T., Yahata, Y., Kuroda, M., Kumeda, Y., Iijima, Y. and Ohnishi, T.: Identification of Kudoa septempunctata as the causative agent of novel food poisoning outbreaks in Japan by consumption of Paralichthys olivaceus in raw fish. Clinical Infectious Diseases, 54(8), 1046-1052, 2012. https://doi.org/10.1093/cid/cir1040.
  26. Kiecolt-Glaser, J.K., Cacioppo, J.T., Malarkey, W.B. and Glaser, R.: Acute psychological stressors and short-term immune changes: What, why, for whom, and to what extent?. Psychosomatic medicine, 54(6), 680-685, 1992. https://doi.org/10.1097/00006842-199211000-00008.
  27. Kim, D., Beck, B.R., Heo, S.B., Kim, J., Kim, H.D., Lee, S.M. and Song, S.K.: Lactococcus lactis BFE920 activates the innate immune system of olive flounder (Paralichthys olivaceus), resulting in protection against Streptococcus iniae infection and enhancing feed efficiency and weight gain in large-scale field studies. Fish & shellfish immunology, 35(5), 1585-1590, 2013. https://doi.org/10.1016/j.fsi.2013.09.008.
  28. Kim, D.H. and Seung, C.K.: Economic contributions of wild fisheries and aquaculture: A social accounting matrix (SAM) analysis for Gyeong-Nam Province, Korea. Ocean & coastal management, 188, 105072, 2020. https://doi.org/10.1016/j.ocecoaman.2019.105072.
  29. Konjevic, G.M., Vuletic, A.M., Martinovic, K.M.M., Larsen, A.K. and Jurisic, V.B.: The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine, 117, 30-40, 2019.
  30. KOSIS. Korean Statistical Information Service. Daejeon, Korea, 2023. https://doi.org/10.1016/j.cyto.2019.02.001.
  31. Lehmann, C., Zeis, M. and Uharek, L.: Activation of natural killer cells with interleukin 2 (IL-2) and IL-12 increases perforin binding and subsequent lysis of tumour cells. British journal of haematology, 114(3), 660-665, 2001. https://doi.org/10.1046/j.1365-2141.2001.02995.x.
  32. Li, Y., Yang, Y., Zheng, W. and Cheng, J.: Genetic parameters and genotype by environment interactions for growth traits and survival of olive flounder (Paralichthys olivaceus) in recirculating aquaculture system and flow-through system. Aquaculture, 510, 56-60, 2019. https://doi.org/10.1016/j.aquaculture.2019.05.043.
  33. Lin, Q., Rong, L., Jia, X., Li, R., Yu, B., Hu, J. and Huang, J.D.: IFN-γ-dependent NK cell activation is essential to metastasis suppression by engineered Salmonella. Nature communications, 12(1), 2537, 2021. https://doi.org/10.1038/s41467-021-22755-3.
  34. Maes, D., Vyt, P., Rabaeys, P. and Gevaert, D.: Effects of toltrazuril on the growth of piglets in herds without clinical isosporosis. The Veterinary Journal, 173 (1), 197-199, 2007. https://doi.org/10.1016/j.tvjl.2005.07.002.
  35. Malaczewska, J., Kaczorek-Lukowska, E. and Kazun, B.: High cytotoxicity of betulin towards fish and murine fibroblasts: Is betulin safe for nonneoplastic cells?. BMC Veterinary Research, 17(1), 198, 2021. https://doi.org/10.1186/s12917-021-02905-x.
  36. Mansour, L., Thabet, A., Chourabi, K., Harrath, A.H., Gtari, M., Al Omar, S.Y. and Ben Hassine, O.K.: Kudoa azevedoi n. sp.(Myxozoa, Multivalvulida) from the oocytes of the Atlantic horse mackerel Trachurus trachurus (Perciformes, Carangidae) in Tunisian coasts. Parasitology Research, 112, 1737-1747, 2013. https://doi.org/10.1007/s00436-013-3332-4.
  37. Matsukane, Y., Sato, H., Tanaka, S., Kamata, Y., & Sugita-Konishi, Y.: Kudoa septempunctata n. sp. (Myxosporea: Multivalvulida) from an aquacultured olive flounder (Paralichthys olivaceus) imported from Korea. J. Parasitol. Res., 107, 865-872, 2010. https://doi.org/10.1007/s00436-010-1941-8.
  38. Meazza, R., Azzarone, B., Orengo, A. M. and Ferrini, S.: Role of common-gamma chain cytokines in NK cell development and function: perspectives for immunotherapy. BioMed Research International, 2011. https://doi.org/10.1155/2011/861920.
  39. Mehlhorn, H., Ortmann-Falkenstein, G. and Haberkorn, A.: The effects of sym. Triazinones on developmental stages of Eimeria tenella, E. maxima and E. acervulina: a light and electron microscopical study. Zeitschrift fur Parasitenkunde, 70, 173-182, 1984. https://doi.org/10.1007/bf00942219.
  40. Mehlhorn, H., Schmahl, G. and Haberkorn, A.: Toltrazuril effective against a broad spectrum of protozoan parasites. Parasitology research, 75(1), 64-66, 1988. https://doi.org/10.1007/bf00931192.
  41. Moretta, A.: Natural killer cells and dendritic cells: rendezvous in abused tissues. Nature Reviews Immunology, 2(12), 957-965, 2002. https://doi.org/10.1038/nri956.
  42. Mundt, H.C., Mundt-WRstenberg, S., Daugschies, A. and Joachim, A.: Efficacy of various anticoccidials against experimental porcine neonatal isosporosis. Parasitology research, 100, 401-411, 2007. https://doi.org/10.1007/s00436-006-0314-9.
  43. Norouzinia, M., Chaleshi, V., Alinaghi, S., Keramatinia, A. and Nourian, M.: Evaluation of IL-12A, IL-12B, IL-23A and IL-27 mRNA expression level genes in peripheral mononuclear cells of inflammatory bowel disease patients in an Iranian population. Gastroenterology and Hepatology from Bed to Bench, 11 (Suppl 1), S45, 2018.
  44. Oh, S. and Lee, S.: Fish Welfare-Related Issues and Their Relevance in Land-Based Olive Flounder (Paralichthys olivaceus) Farms in Korea. Animals, 14(11), 1693, 2024. https://doi.org/10.3390/ani14111693.
  45. Parihar, R., Dierksheide, J., Hu, Y. and Carson, W.E.: IL-12 enhances the natural killer cell cytokine response to Ab-coated tumor cells. The Journal of clinical investigation, 110(7), 983-992, 2002. https://doi.org/10.1172/jci200215950.
  46. Park, K. H., Yoon, J. M.and Choi, S.: Effect of Levamisole on Enhancing Natural Cytotoxic Cell Activity in Nile Tilapia Oreochromis niloticus. Korean Journal of Fisheries and Aquatic Sciences, 45(6), 675-678, 2012. https://doi.org/10.5657/kfas.2012.0675.
  47. Park, S.H., Kim, C.H., Do, J.W., Choi, H.S. and Kim, Y.K.: Effects of amprolium hydrochloride on expression of drug metabolizing enzyme genes in olive flounder Paralichthys olivaceus, The Korean Society of Fish Pathology, 36(2), 337-348, 2023. http://dx.doi.org/10.7847/jfp.2023.36.2.337.
  48. Perez-Cordon, G., Estensoro, I., Benedito-Palos, L., Calduch-Giner, J.A., Sitja-Bobadilla, A. and Perez-Sanchez, J.: Interleukin gene expression is strongly modulated at the local level in a fish-parasite model. Fish & shellfish immunology, 37(2), 201-208, 2014. https://doi.org/10.1016/j.fsi.2014.01.022.
  49. Persson, D., Nodtvedt, A., Aunsmo, A. and Stormoen, M.: Analysing mortality patterns in salmon farming using daily cage registrations. Journal of Fish Diseases, 45(2), 335-347, 2022. https://doi.org/10.1111/jfd.13560.
  50. Sandeep, B.V., Kalavati, C. and Narasimhamurti, C.C.: Kudoa atropi sp. n.(Myxosporea: Multivalulida) a myxosporidian parasite from the gills of Atropus atropus. Vestn. Cesk. Spol. Zool, 50, 132-135, 1986.
  51. Ristow, S., Evans, D. L. and Jaso-Friedmann, L.: Analyzing nonspecific cytotoxic cells in fish. Natural Killer Cell Protocols: Cellular and Molecular Methods, pp 347-357 1st edition 347-357. 2000. https://doi.org/10.1385/1-59259-044-6:347.
  52. Kerry S. Campbell and Marco Colonna., Humana Press, New Jersey, 2000.
  53. Ghanmi, Z., Rouabhia, M., Alifuddin, M., Troutaud, D., and Deschaux, P.: Modulatory effect of metal lons on the immune response of fish: In vivo and in vitro influence of MnCl2 on NK activity of carp pronephros cells. Ecotoxicology and environmental safety, 20(3), 241-245, 1990. https://doi.org/10.1016/0147-6513(90)90003-n.
  54. Sato, N., Kikuchi, S. and Sato, K.: Quantifying the Stress Induced by Distress in Patients With Lumbar Disc Herniation in Terms of Natural Killer Cell Activity Measurements: Chromium Release Assay: Versus: Multiparameter Flow Cytometric Assay. Spine, 27 (19), 2095-2100, 2002. https://doi.org/10.1097/00007632-200210010-00004.
  55. Schmahl, G. and Mehlhorn, H.: Treatment of fish parasites: 6. Effects of sym. triazinone (toltrazuril) on developmental stages of Glugea anomala, Moniez, 1887 (microsporidia): A light and electron microscopic study. European journal of protistology, 24 (3), 252-259, 1989. https://doi.org/10.1016/S0932-4739(89)80062-8.
  56. Schroder, K., Hertzog, P.J., Ravasi, T. and Hume, D.A.: Interferon-γ: an overview of signals, mechanisms and functions. Journal of Leucocyte Biology, 75(2), 163-189, 2004. https://doi.org/10.1189/jlb.0603252.
  57. Screpanti, V., Wallin, R.P., Grandien, A. and Ljunggren, H.G.: Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Molecular immunology, 42(4), 495-499, 2005. https://doi.org/10.1016/j.molimm.2004.07.033.
  58. Shemesh, A., Pickering, H., Roybal, K.T. and Lanier, L.L.: Differential IL-12 signaling induces human natural killer cell activating receptor-mediated ligand-specific expansion. Journal of Experimental Medicine, 219(8), e20212434, 2022. https://doi.org/10.1084/jem.20212434.
  59. Singh, G.G., Sajid, Z. and Mather, C.: Quantitative analysis of mass mortality events in salmon aquaculture shows increasing scale of fish loss events around the world. Scientific Reports, 14(1), 3763, 2024. https://doi.org/10.1038/s41598-024-54033-9.
  60. Singh, G. G., Sajid, Z. and Mather, C.: Quantitative analysis of mass mortality events in salmon aquaculture shows increasing scale of fish loss events around the world. Scientific Reports, 14(1), 3763, 2024. https://doi.org/10.1038/s41598-024-54033-9.
  61. Thielens, A., Vivier, E. and Romagne, F.: NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Current opinion in immunology, 24(2), 239-245, 2012. https://doi.org/10.1016/j.coi.2012.01.001.
  62. Uzhachenko, R.V. and Shanker, A.: CD8+ T lymphocyte and NK cell network: circuitry in the cytotoxic domain of immunity. Frontiers in immunology, 10, 461621, 2019. https://doi.org/10.3389/fimmu.2019.01906.
  63. Vignali, D.A. and Kuchroo, V.K.: IL-12 family cytokines: immunological playmakers. Nature immunology, 13(8), 722-728, 2012. https://doi.org/10.1038/ni.2366.
  64. Waggoner, S.N., Cornberg, M., Selin, L.K. and Welsh, R.M.: Natural killer cells act as rheostats modulating antiviral T cells. Nature, 481(7381), 394-398, 2012. https://doi.org/10.1038/nature10624.
  65. Wang, T., Husain, M., Hong, S. and Holland, J.W.: Differential expression, modulation and bioactivity of distinct fish IL-12 isoforms: Implication towards the evolution of Th1-like immune responses. European journal of immunology, 44(5), 1541-1551, 2014. https://doi.org/10.1002/eji.201344273.
  66. Wang, W., Erbe, A.K., Hank, J.A., Morris, Z.S. and Sondel, P.M.: NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Frontiers in immunology, 6, 155000, 2015. https://doi.org/10.3389/fimmu.2015.00368.
  67. Wendel, P., Reindl, L.M., Bexte, T., Kunnemeyer, L., Sarchen, V., Albinger, N. and Ullrich, E.: Arming immune cells for battle: a brief journey through the advancements of T and NK cell immunotherapy. Cancers, 13(6), 1481, 2021. https://doi.org/10.3390/cancers13061481.
  68. Whiteside, T.L. and Friberg, D.: Natural killer cells and natural killer cell activity in chronic fatigue syndrome. The American journal of medicine, 105(3), 27S-34S, 1998. https://doi.org/10.1016/s0002-9343(98)00155-7.
  69. Zhang, Y., Zhao, Y., Zhai, Y., He, J., Tang, M., Liu, Y. and Zhang, Y.: Cadmium impairs the development of natural killer cells and bidirectionally modifies their capacity for cytotoxicity. Chemosphere, 311, 137068, 2023. https://doi.org/10.1016/j.chemosphere.2022.137068.
  70. 국가법령정보센터. 수산용 동물용의약품등 독성시험지침[시행 2021.3.1] [국립수산물품질관리원고시 제2021-16호, 2021.2.24., 일부개정]. https://law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000198545. 2024.6.10. 접속.