DOI QR코드

DOI QR Code

난배양성(viable but non-culturable; VBNC) Edwardsiella piscicida의 특성 연구

Characterization of viable but non-culturable (VBNC) Edwardsiella piscicida

  • 김아현 (부경대학교 수산생명의학과) ;
  • 이윤항 (부경대학교 수산생명의학과) ;
  • 노형진 (부경대학교 수산생명의학과) ;
  • 허영웅 (부경대학교 수산생명의학과) ;
  • 김남은 (부경대학교 수산생명의학과) ;
  • 김도형 (부경대학교 수산생명의학과)
  • Ahyun Kim (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Yoonhang Lee (Department of Aquatic Life Medicine, Pukyong National University) ;
  • HyeongJin Roh (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Young-Ung Heo (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Nameun Kim (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Do-Hyung Kim (Department of Aquatic Life Medicine, Pukyong National University)
  • 투고 : 2024.05.04
  • 심사 : 2024.06.03
  • 발행 : 2024.06.30

초록

A viable but non-culturable (VBNC) state is a survival strategy adopted by bacteria when faced with unfavorable environmental conditions, rendering them unable to grow on nutrient agar while maintaining low metabolic activity. This study explored the impact of temperature and nutrient availability on inducing VBNC state in Edwardsiella piscicida, the most important bacterial fish pathogen, and assessed its pathogenicity at VBNC state. E. piscicida was suspended in filtered sterile seawater and exposed to three different temperatures (4, 10, and 25℃) to induce the VBNC state. Subsequently, the induced VBNC cells were subjected to resuscitation by either raising the temperature to 28℃ or inoculating them in brain heart infusion broth supplemented with 1% NaCl. A propidium monoazide (PMA)-qPCR method was also developed to selectively quantify live (VBNC or culturable) E. piscicida cells. The results showed that the bacteria entered the VBNC state after approximately 1 month at 4℃ and 25℃, and 2 months at 10℃. The VBNC E. piscicida cells were successfully revived within 3 days in a nutrient-rich environment at 28℃, highlighting the significance of temperature and nutrition in inducing and resuscitating the VBNC state. In pathogenicity tests, resuscitated E. piscicida cells exhibited high pathogenicity in olive flounder comparable to cultured bacteria, while VBNC cells showed no signs of infection, suggesting they are unlikely to resuscitate in fish. In conclusion, this study contributes to our understanding of fish pathogen ecology by investigating the characteristics of the VBNC state under varying temperature and nutrition conditions.

키워드

과제정보

이 논문은 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20210257, 넙치 SPF(특정 병원체 무감염) 종자생산 기술개발).

참고문헌

  1. Amel, D., & Amina, B. (2008). Resuscitation of Seventeen-year Stressed. Oceanological and Hydrobiological Studies, 37(1), 69-82. https://doi.org/10.2478/v10009-007-0038-x
  2. Ayrapetyan, M., & Oliver, J. D. (2016). The viable but non-culturable state and its relevance in food safety. Current Opinion in Food Science, 8, 127-133. https://doi.org/10.1016/j.cofs.2016.04.010
  3. Baffone, W., Casaroli, A., Citterio, B., Pierfelici, L., Campana, R., Vittoria, E., ... & Donelli, G. (2006). Campylobacter jejuni loss of culturability in aqueous microcosms and ability to resuscitate in a mouse model. International journal of food microbiology, 107(1), 83-91. https://doi.org/10.1016/j.ijfoodmicro.2005.08.015
  4. Bloomfield, S. F., Stewart, G. S., Dodd, C. E., Booth, I. R., & Power, E. G. M. (1998). The viable but non-culturable phenomenon explained?. Microbiology, 144(1), 1-3. https://doi.org/10.1099/00221287-144-1-1
  5. Brooks, A. N., Turkarslan, S., Beer, K. D., Yin Lo, F., & Baliga, N. S. (2011). Adaptation of cells to new environments. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3(5), 544-561. https://doi.org/10.1002/wsbm.136
  6. Cappelier, J., Besnard, V., Roche, S., Velge, P., & Federighi, M. M. (2007). Avirulent viable but non culturable cells of Listeria monocytogenes need the presence of an embryo to be recovered in egg yolk and regain virulence after recovery. Veterinary Research, 38(4), 573-583. https://doi.org/10.1051/vetres:2007017
  7. Contreras, P. J., Urrutia, H., Sossa, K., & Nocker, A. (2011). Effect of PCR amplicon length on suppressing signals from membrane-compromised cells by propidium monoazide treatment. Journal of microbiological methods, 87(1), 89-95. https://doi.org/10.1016/j.mimet.2011.07.016
  8. Curras, M., Magarinos, B., Toranzo, A. E., & Romalde, J. L. (2002). Dormancy as a survival strategy of the fish pathogen Streptococcus parauberis in the marine environment. Diseases of aquatic organisms, 52(2), 129-136. https://doi.org/10.3354/dao052129
  9. Dinu, L. D., & Bach, S. (2013). Detection of viable but non-culturable Escherichia coli O157: H7 from vegetable samples using quantitative PCR with propidium monoazide and immunological assays. Food Control, 31(2), 268-273. https://doi.org/10.1016/j.foodcont.2012.10.020
  10. Du, M., Chen, J., Zhang, X., Li, A., Li, Y., & Wang, Y. (2007). Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate. Applied and Environmental Microbiology, 73(4), 1349-1354. https://doi.org/10.1128/AEM.02243-06
  11. Elizaquivel, P., Sanchez, G., & Aznar, R. (2012). Quantitative detection of viable foodborne E. coli O157: H7, Listeria monocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR. Food Control, 25(2), 704-708. https://doi.org/10.1016/j.foodcont.2011.12.003
  12. Esteve, C., & Alcaide, E. (2022). Monitoring the Starvation-Survival Response of Edwardsiella piscicida and E. tarda in Freshwater Microcosms, at Various Temperatures. Microorganisms, 10(5), 1043. https://doi.org/10.3390/microorganisms10051043
  13. Fera, M. T., Maugeri, T. L., Gugliandolo, C., La Camera, E., Lentini, V., Favaloro, A., … & Carbone, M. (2008). Induction and resuscitation of viable nonculturable Arcobacter butzleri cells. Applied and environmental microbiology, 74(10), 3266-3268. https://doi.org/10.1128/AEM.00059-08
  14. Fu, Y., Jia, Y., Fan, J., Yu, C., Yu, C., & Shen, C. (2020). Induction of Escherichia coli O157: H7 into a viable but non-culturable state by high temperature and its resuscitation. Environmental microbiology reports, 12(5), 568-577. https://doi.org/10.1111/1758-2229.12877
  15. Han, H. J., Kim, D. H., Lee, D. C., Kim, S. M., & Park, S. L. (2006). Pathogenicity of Edwardsiella tarda to olive flounder, Paralichthys olivaceus (Temminck & Schlegel) Journal of Fish Diseases 29(10), 601-609. https://doi.org/10.1111/j.1365-2761.2006.00754.x
  16. Kang, N. I., & Kim, E. (2016). Induction and resuscitation of viable but nonculturable Edwardsiella tarda. Korean Journal of Microbiology, 52(3), 313-318. https://doi.org/10.7845/kjm.2016.6051
  17. Laboratorium, K. (2009). Development of a method to distinguish between DNA from dead or living microorganisms. Frauenfeld: Kantonales Laboratorium.
  18. Lahtinen, S. J., Ahokoski, H., Reinikainen, J. P., Gueimonde, M., Nurmi, J., Ouwehand, A. C., & Salminen, S. J. (2008). Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Letters in applied microbiology, 46(6), 693-698. https://doi.org/10.1111/j.1472-765X.2008.02374.x
  19. Li, L., Mendis, N., Trigui, H., Oliver, J. D., & Faucher, S. P. (2014). The importance of the viable but non-culturable state in human bacterial pathogens. Frontiers in microbiology, 5, 88860. https://doi.org/10.3389/fmicb.2014.00258
  20. Liang, N., Dong, J., Luo, L., & Li, Y. (2011). Detection of viable Salmonella in lettuce by propidium monoazide real-time PCR. Journal of Food Science, 76(4), M234-M237. https://doi.org/10.1111/j.1750-3841.2011.02123.x
  21. Liu, Y., Zhong, Q., Wang, J., & Lei, S. (2018). Enumeration of Vibrio parahaemolyticus in VBNC state by PMA-combined real-time quantitative PCR coupled with confirmation of respiratory activity. Food Control, 91, 85-91. https://doi.org/10.1016/j.foodcont.2018.03.037
  22. Loozen, G., Boon, N., Pauwels, M., Quirynen, M., & Teughels, W. (2011). Live/dead real-time polymerase chain reaction to assess new therapies against dental plaque-related pathologies. Molecular oral microbiology, 26(4), 253-261. https://doi.org/10.1111/j.2041-1014.2011.00615.x
  23. Lovdal, T., Hovda, M. B., Bjorkblom, B., & Moller, S. G. (2011). Propidium monoazide combined with real-time quantitative PCR underestimates heat-killed Listeria innocua. Journal of microbiological methods, 85(2), 164-169. https://doi.org/10.1016/j.mimet.2011.01.027
  24. Lv, R., Wang, K., Feng, J., Heeney, D. D., Liu, D., & Lu, X. (2020). Detection and quantification of viable but non-culturable Campylobacter jejuni. Frontiers in microbiology, 10, 2920. https://doi.org/10.3389/fmicb.2019.02920
  25. Maalej, S., Denis, M., & Dukan, S. (2004). Temperature and growth-phase effects on Aeromonas hydrophila survival in natural seawater microcosms: role of protein synthesis and nucleic acid content on viable but temporarily nonculturable response. Microbiology, 150(1), 181-187. https://doi.org/10.1099/mic.0.26639-0
  26. Martin, B., Raurich, S., Garriga, M., & Aymerich, T. (2013). Effect of amplicon length in propidium monoazide quantitative PCR for the enumeration of viable cells of Salmonella in cooked ham. Food Analytical Methods, 6, 683-690. https://doi.org/10.1007/s12161-012-9460-0
  27. Martinon, A., Cronin, U. P., Quealy, J., Stapleton, A., & Wilkinson, M. G. (2012). Swab sample preparation and viable real-time PCR methodologies for the recovery of Escherichia coli, Staphylococcus aureus or Listeria monocytogenes from artificially contaminated food processing surfaces. Food Control, 24(1-2), 86-94. https://doi.org/10.1016/j.foodcont.2011. 09.007
  28. Miotto, M., Barretta, C., Ossai, S. O., da Silva, H. S., Kist, A., Vieira, C. R. W., & Parveen, S. (2020). Optimization of a propidium monoazide-qPCR method for Escherichia coli quantification in raw seafood. International journal of food microbiology, 318, 108467. https://doi.org/10.1016/j.ijfoodmicro.2019.108467
  29. Mohanty and Sahoo Pasquaroli, S., Zandri, G., Vignaroli, C., Vuotto, C., Donelli, G., & Biavasco, F. (2013). Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms. Journal of Antimicrobial Chemotherapy, 68(8), 1812-1817. https://doi.org/10.1093/jac/dkt086
  30. Mohanty, B. R., & Sahoo, P. K. (2007). Edwardsiellosis in fish: a brief review. Journal of biosciences, 32, 1331-1344. https://doi.org/10.1007/s12038-007-0143-8
  31. Navarrete, F., & De La Fuente, L. (2014). Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions. Applied and environmental microbiology, 80(3), 1097-1107. https://doi.org/10.1128/AEM.02998-13
  32. Nocker, A., Cheung, C. Y., & Camper, A. K. (2006). Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. Journal of microbiological methods, 67(2), 310-320. https://doi.org/10.1016/j.mimet.2006.04.015
  33. Oliver, J. D. (2010). Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS microbiology reviews, 34(4), 415-425. https://doi.org/10.1111/j.1574-6976.2009.00200.x
  34. Pan, Y. O. U. W. E. N., & Breidt Jr, F. (2007). Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Applied and Environmental Microbiology, 73(24), 8028-8031. https://doi.org/10.1128/AEM.01198-07
  35. Park, S. B., Aoki, T., & Jung, T. S. (2012). Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Veterinary research, 43(1), 1-11. https://doi.org/10.1186/1297-9716-43-67
  36. Rahman, I., Shahamat, M., Kirchman, P. A., Russek-Cohen, E., & Colwell, R. R. (1994). Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Applied and environmental microbiology, 60(10), 3573-3578. http://dx.doi.org/10.1128/aem.60.10.3573-3578.1994
  37. Ramamurthy, T., Ghosh, A., Pazhani, G. P., & Shinoda, S. (2014). Current perspectives on viable but nonculturable (VBNC) pathogenic bacteria. Frontiers in public health, 2, 103. http://dx.doi.org/10.3389/fpubh.2014.00103
  38. Reichley, S. R., Ware, C., Greenway, T. E., Wise, D. J., & Griffin, M. J. (2015). Real-time polymerase chain reaction assays for the detection and quantification of Edwardsiella tarda, Edwardsiella piscicida, and Edwardsiella piscicida-like species in catfish tissues and pond water. Journal of Veterinary Diagnostic Investigation, 27(2), 130-139. http://dx.doi.org/10.1177/1040638714566672
  39. Rudi, K., Moen, B., Dromtorp, S. M., & Holck, A. L. (2005). Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Applied and environmental microbiology, 71(2), 1018-1024. http://dx.doi.org/10.1128/AEM.71.2.1018-1024.2005
  40. Truchado, P., Gil, M. I., Kostic, T., & Allende, A. (2016). Optimization and validation of a PMA qPCR method for Escherichia coli quantification in primary production. Food Control, 62, 150-156. http://dx.doi.org/10.1016/j.foodcont.2015.10.014
  41. Van Holm, W., Ghesquiere, J., Boon, N., Verspecht, T., Bernaerts, K., Zayed, N., ... & Teughels, W. (2021). A viability quantitative PCR dilemma: are longer amplicons better?. Applied and environmental microbiology, 87(5), e02653-20. http://dx.doi.org/10.1128/AEM.02653-20
  42. Whitesides, M. D., & Oliver, J. D. (1997). Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Applied and environmental microbiology, 63(3), 1002-1005. http://dx.doi.org/10.1128/aem.63.3.1002-1005.1997
  43. Wu, B., Liang, W., & Kan, B. (2016). Growth phase, oxygen, temperature, and starvation affect the development of viable but non-culturable state of Vibrio cholerae. Frontiers in microbiology, 7, 404. http://dx.doi.org/10.3389/fmicb.2016.00404
  44. Yaron, S., & Matthews, K. R. (2002). A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157: H7: investigation of specific target genes. Journal of applied microbiology, 92(4), 633-640. http://dx.doi.org/10.1046/j.1365-2672.2002.01563.x
  45. Yoon, J. H., Moon, S. K., Choi, C., Ryu, B. Y., & Lee, S. Y. (2019). Detection of viable but nonculturable Vibrio parahaemolyticus induced by prolonged cold- starvation using propidium monoazide real-time polymerase chain reaction. Letters in applied microbiology, 68(6), 537-545. http://dx.doi.org/10.1111/lam.13157
  46. Zhao, Y., Chen, H., Liu, H., Cai, J., Meng, L., Dong, L., ... & Wang, C. (2019). Quantitative polymerase chain reaction coupled with sodium dodecyl sulfate and propidium monoazide for detection of viable Streptococcus agalactiae in milk. Frontiers in Microbiology, 10, 661. http://dx.doi.org/10.3389/fmicb.2019.00661