DOI QR코드

DOI QR Code

Construction of nervous necrosis virus (NNV) genome-based DNA replicon vectors for the delivery of foreign antigens

  • Jeong In Yang (National Institute of Aquatic Resources (DTU Aqua)) ;
  • Ki Hong Kim (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2024.04.29
  • Accepted : 2024.05.29
  • Published : 2024.06.30

Abstract

The advantages of replicon vectors of RNA viruses include a high ability to stimulate innate immunity and exponential amplification of target mRNA leading to high expression of foreign antigens. The present study aimed to construct a DNA-layered nervous necrosis virus (NNV) replicon vector system in which the capsid protein gene was replaced with a foreign antigen gene and to compare the efficiency of foreign antigen expression between the conventional DNA vaccine vector and the present replicon vector. We presented the first report of a nodavirus DNA replicon-based foreign antigen expression system. Instead of a two-vector system, we devised a one-vector system containing both an NNV RNA-dependent RNA polymerase cassette and a foreign antigen-expressing cassette. This single-vector approach circumvents the issue of low foreign protein expression associated with the low co-transfection efficiency of a two-vector system. Cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 (with the capsid gene ORF replaced with VHSV glycoprotein ORF) exhibited significantly higher transcription of the VHSV glycoprotein gene compared to cells transfected with either a vector without hammerhead ribozyme or a conventional DNA vaccine vector expressing the VHSV glycoprotein. Furthermore, the transcription level of the VHSV glycoprotein in cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 showed a significant increase over time. These results suggest that NNV genome-based DNA replicon vectors have the potential to induce stronger and longer expression of target antigens compared to conventional DNA vaccine vectors.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No.2021R1A2C2006672).

References

  1. Ahne, W., Bjorklund, H.V., Essbauer, S., Fijan, N., Kurath, G. and Winton, J.R.: Spring viremia of carp (SVC). Dis. Aquat. Organ., 52(3):261-272, 2002. doi: 10.3354/dao052261
  2. Atasheva, S., McAuley, A. J., Plante, J. A., Frolova, E. I., Beasley, D. W. and Frolov, I.: Enhancement of protein expression by alphavirus replicons by designing self-replicating subgenomic RNAs. P.N.A.S., 111(29):10708-10713, 2014. doi: 10.1073/pnas.1408677111
  3. Atieh, T., El Ayoubi, M.D., Aubry, F., Priet, S., de Lamballerie, X. and Nougairede, A.: Haiku: New paradigm for the reverse genetics of emerging RNA viruses. PLoS ONE, 13(2): e0193069, 2018. doi: 10.1371/journal.pone.0193069
  4. Ball, L. A.: Cellular expression of a functional nodavirus RNA replicon from vaccinia virus vectors. J. Virol., 66(4):2335-2345, 1992. doi: 10.1128/JVI.66.4.2335-2345.1992
  5. Berglund, P., Smerdou, C., Fleeton, M.N., Tubulekas, I. and Liljestrom, P.: Enhancing immune responses using suicidal DNA vaccines. Nat. Biotechnol., 16:562-565, 1998. doi: 10.1038/nbt0698-562
  6. Dominguez, F., Palchevska, O., Frolova, E.I. and Frolov, I.: Alphavirus-based replicons demonstrate different interactions with host cells and can be optimized to increase protein expression. J. Virol., 97(11):e0122523, 2023. doi: 10.1128/jvi.01225-23
  7. Englezou, P.C., Sapet, C., Demoulins, T., Milona, P., Ebensen, T., Schulze, K., Guzman, C.A., Poulhes, F., Zelphati, O., Ruggli, N. and McCullough, K.C.: Self-amplifying replicon RNA delivery to dendritic cells by cationic lipids. Molecular Therapy-Nucleic Acids, 12:118-134, 2018. doi: 10.1016/j.omtn.2018.04.019
  8. Hariharan, M.J., Driver, D.A., Townsend, K., Brumm, D., Polo, J.M., Belli, B.A., Catton, D.J., Hsu, D., Mittelstaedt, D., McCormack, J.E., Karavodin, L., Dubensky, T.W. Jr., Chang, S.M. and Banks, T.A.: DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J. Virol., 72:950-958, 1998. doi: 10.1128/JVI.72.2.950-958.1998
  9. Kim, D.Y., Atasheva, S., McAuley, A.J., Plante, J.A., Frolova, E.I., Beasley, D.W. and Frolov, I.: Enhancement of protein expression by alphavirus replicons by designing self-replicating subgenomic RNAs. Proc. Natl. Acad. Sci. U. S. A., 111(29):10708-10713, 2014. doi: 10.1073/pnas.1408677111
  10. Kim, S.J., Qadiri, S.S.N. and Oh, M.J.: Juvenile olive flounder immersed in live VHSV at 17 ℃ and 20℃ shows resistance against VHSV infection at 10℃. Virus Res., 273:197738, 2019. doi: 10.1016/j.virusres.2019.197738
  11. Lee, K.M., Kim, D.H. and Kim, K.H.: Replication of heterologous glycoprotein-expressing chimeric recombinant snakehead rhabdoviruses (rSHRVs) and viral hemorrhagic septicemia viruses (rVHSVs) at different temperatures. Virus Res., 297:198392, 2021. doi: 10.1016/j.virusres.2021.198392
  12. Leitner, W.W., Ying, H., Driver, D.A., Dubensky, T.W. and Restifo, N.P.: Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res.,60:51-55, 2000. PMID: 10646851
  13. Ljungberg, K., Whitmore, A.C., Fluet, M.E., Moran, T.P., Shabman, R.S., Collier, M. L., Kraus, A.A., Thompson, J.M., Montefiori, D.C., Beard, C. and Johnston, R.E.: Increased immunogenicity of a DNA-launched Venezuelan equine encephalitis virus-based replicon DNA vaccine. J. Virol., 81(24):13412-13423, 2007. doi: 10.1128/JVI.01799-07
  14. McLoughlin, M.F. and Graham, D.A.: Alphavirus infections in salmonids-a review. J. Fish Dis., 30(9):511-531, 2007. doi: 10.1111/j.1365-2761.2007.00848.x
  15. Naslund, T.I., Kostic, L., Nordstrom, E.K., Chen, M. and Liljestrom, P.: Role of innate signalling pathways in the immunogenicity of alphaviral replicon-based vaccines. Virol. J., 8(1):36, 2011. doi: 10.1186/1743-422X-8-36
  16. Nolden, T., Pfaff, F., Nemitz, S., Freuling, C.M., Hoper, D., Muller, T. and Finke S.: Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof. Sci. Rep., 6:23887, 2016. doi: 10.1038/srep23887
  17. Odegard, A., Banerjee, M. and Johnson, J.E.: Flock house virus: a model system for understanding non-enveloped virus entry and membrane penetration. Curr. Top. Microbiol. Immunol., 343:1-22, 2010. doi: 10.1007/82_2010_35
  18. Panzarin, V., Cappellozza, E., Mancin, M., Milani, A., Toffan, A., Terregino, C. and Cattoli, G.: In vitro study of the replication capacity of the RGNNV and the SJNNV betanodavirus genotypes and their natural reassortants in response to temperature. Vet. Res,, 45(1):56, 2014. doi: 10.1186/1297-9716-45-56
  19. Reap, E.A., Morris, J., Dryga, S.A., Maughan, M., Talarico, T., Esch, R.E., Negri, S., Burnett, B., Graham, A., Olmsted, R.A. and Chulay, J.D.: Development and preclinical evaluation of an alphavirus replicon particle vaccine for cytomegalovirus. Vaccine, 25(42):7441-7449, 2007. doi: 10.1016/j.vaccine.2007.08.016
  20. Rouxel, R.N., Merour, E., Biacchesi, S. and Bremont, M.: Efficient co-replication of defective novirhabdovirus. Viruses, 8(3): 69, 2016. doi: 10.3390/v8030069
  21. Toffan, A., Panzarin, V., Toson, M., Cecchettin, K. and Pascoli, F.: Water temperature affects pathogenicity of different betanodavirus genotypes in experimentally challenged Dicentrarchus labrax. Dis. Aquat. Org., 119(3):231-238, 2016. doi: 10.3354/dao03003
  22. Tonkin, D.R., Jorquera, P., Todd, T., Beard, C.W., Johnston, R.E. and Barro, M.: Alphavirus replicon-based enhancement of mucosal and systemic immunity is linked to the innate response generated by primary immunization. Vaccine, 28(18):3238-3246, 2010. doi: 10.1016/j.vaccine.2010.02.010
  23. Venter, P.A. and Schneemann, A.: Recent insights into the biology and biomedical applications of Flock House virus. Cell. Mol. Life Sci., 65(17):2675, 2008. doi: 10.1007/s00018-008-8037-y
  24. Zhou, Y. and Routh, A.L.: Bipartite viral RNA genome heterodimerization influences genome packaging and virion thermostability. J. Virol., 98(3):e0182023, 2024. doi: 10.1128/jvi.01820-23