DOI QR코드

DOI QR Code

Study on Quantum Dot Components and Their Use in High Color Rendering Lighting

양자점 부품과 이를 활용한 고연색성 조명 연구

  • Jae-Hyeon Ko (School of Semiconductor.Display Technology, Nano Convergence Technology Center, Hallym University)
  • 고재현 (한림대학교 반도체.디스플레이스쿨 나노융합기술연구소)
  • Received : 2024.05.07
  • Accepted : 2024.05.25
  • Published : 2024.06.25

Abstract

In the 21st century, white light-emitting diodes (LEDs) are widely used as backlighting for liquid crystal displays and as a light source for general illumination. However, white LEDs used in lighting often use a single yellow phosphor on top of a blue LED chip, which lacks the ability to reproduce natural colors in objects under conventional illumination accurately. Recently, researchers have been actively working on realizing high color-rendering lighting by incorporating red quantum dots to improve the spectrum in the long-wavelength band, which is deficient in conventional white LEDs. In particular, how to develop and apply remote quantum dot components to ensure long-term reliability is currently under active research. This paper introduces recent research on remote quantum dot components and the current status of developing high color-rendering lightings with them. Especially, we focus on various factors that are important to consider in optimizing the optical structure of the quantum dot components and discuss the future directions and prospects of research for high color-rendering lighting technology.

일반 백색 LED의 연색성을 보완하기 위해 적색 양자점을 선택적으로 활용함으로써 고연색성 조명을 구현하는 연구가 최근 활발하다. 본 논문에서는 최근 이루어지고 있는 원격 양자점 부품 연구 및 이를 활용한 고연색성 조명 개발의 현황에 대해 소개한다. 특히 양자점 부품이 배치되는 조명의 광구조 최적화에 있어서 중요하게 고려해야 할 다양한 요소를 집중적으로 논의함으로써 향후 고연색성 조명 연구의 방향 및 전망까지 다루고자 했다.

Keywords

Acknowledgement

본 연구를 위해 양자점 부품을 제공해 주고 다양한 조언을 해 준 철원플라즈마산업기술연구원, (주)지엘비젼, (주)이노큐디에 감사드립니다.

References

  1. P. Pust, P. J. Schmidt, and W. Schnick, "A revolution in lighting," Nat. Mater. 14, 454-458 (2015).
  2. J. McKittrick and L. E. Shea-Rohwer, "Review: Down conversion materials for solid-state lighting," J. Am. Ceram. Soc. 97, 1327-1352 (2014).
  3. C. C. Lin, A. Meijerink, and R.-S. Liu, "Critical red components for next-generation white LEDs," J. Phys. Chem. Lett. 7, 495-503 (2016).
  4. W.-L. Wu, M.-H. Fang, W. Zhou, T. Lesniewski, S. Mahlik, M. Grinberg, M. G. Brik, H.-S. Sheu, B.-M. Cheng, J. Wang, and R.-S. Liu, "High color rendering index of Rb2GeF6:Mn4+ for light-emitting diodes," Chem. Mater. 29, 935-939 (2017).
  5. D. Luo, L. Wang, S. W. Or, H. Zhang, and R.-J. Xie, "Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors," RSC Adv. 7, 25964-25968 (2017).
  6. M. Kim, W. B. Park, B. Bang, C. H. Kim, and K.-S. Sohn, "Radiative and non-radiative decay rate of K2SiF6:Mn4+ phosphors," J. Mater. Chem. C 3, 5484-5489 (2015).
  7. D. Y. Jeong, J. Ju, and D. H. Kim, "Optimized photoluminescence of K2SiF6:Mn4+ phosphors for LED solid-state lighting," New Phys.: Sae Mulli 66, 311-316 (2016).
  8. H.-W. Choi, M. H. Choi, and J.-H. Ko, "Effect of temperature on the luminous properties of white-light-emitting diodes with red and green phosphors," New Phys.: Sae Mulli 63, 1149-1154 (2013).
  9. B. Li, M. Lu, J. Feng, J. Zhang, P. M. Smowton, J. I. Sohn, I.-K. Park, H. Zhong, and B. Hou, "Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting," J. Mater. Chem. C 8, 10676-10695 (2020).
  10. S. Nizamoglu, T. Erdem, X. W. Sun, and H. V. Demir, "Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering," Opt. Lett. 35, 3372-3374 (2010).
  11. K. A. Denault, A. A. Mikhailovsky, S. Brinkley, S. P. Den-Baars, and R. Seshadri, "Improving color rendition in solid state white lighting through the use of quantum dots," J. Mater. Chem. C 1, 1461-1466 (2013).
  12. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, "Solution-processed, high-performance light-emitting diodes based on quantum dots," Nature 515, 96-99 (2014).
  13. D.-Y. Jo and H. Yang, "Spectral broadening of Cu-In-Zn-S quantum dot color converters for high color rendering white lighting device," J. Lumin. 166, 227-232 (2015).
  14. S.-R. Chung, S.-S. Chen, K.-W. Wang, and C.-B. Siao, "Promotion of solid-state lighting for ZnCdSe quantum dot modified-YAG-based white light-emitting diodes," RSC Adv. 6, 51989-51996 (2016).
  15. J.-H. Kim, D.-Y. Jo, K.-H. Lee, E.-P. Jang, C.-Y. Han, J.-H. Jo, and H. Yang, "White electroluminescent lighting device based on a single quantum dot emitter," Adv. Mater. 28, 5093-5098 (2016).
  16. H. C. Yoon, J. H. Oh, S. Lee, J. B. Park, and Y. R. Do, "Circadian-tunable perovskite quantum dot-based down-converted multi-package white LED with a color fidelity index over 90," Sci. Rep. 7, 2808 (2017).
  17. J.-H. Kim, B.-Y. Kim, E.-P. Jang, C.-Y. Han, J.-H. Jo, Y. R. Do, and H. Yang, "A near-ideal color rendering white solid-state lighting device copackaged with two color-separated Cu-X-S (X = Ga, In) quantum dot emitters," J. Mater. Chem. C 5, 6755-6761 (2017).
  18. T. Meng, T. Yuan, X. Li, Y. Li, L. Fan, and S. Yang, "Ultra-broad-band, red sufficient, solid white emission from carbon quantum dot aggregation for single component warm white light emitting diodes with a 91 high color rendering index," Chem. Commun. 55, 6531-6534 (2019).
  19. H. Zhang, Q. Su, and S. Chen, "Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission," Nat. Commun. 11, 2826 (2020).
  20. S. Rhee, K. Kim, J. Roh, and J. Kwak, "Recent progress in high-luminance quantum dot light-emitting diodes," Curr. Opt. Photonics 4, 161-173 (2020).
  21. A. Hong, J. Kim, and J. Kwak, "Sunlike white quantum dot light-emitting diodes with high color rendition quality," Adv. Opt. Mater. 8, 2001051 (2020).
  22. Z. Luo, Y. Chen, and S.-T. Wu, "Wide color gamut LCD with a quantum dot backlight," Opt. Express 21, 26269-26284 (2013).
  23. Y. Altintas, S. Genc, M. Y. Talpur, and E. Mutlugun, "CdSe/ZnS quantum dot films for high performance flexible lighting and display applications," Nanotechnology 27, 295604 (2016).
  24. Y.-H. Ko and J.-G. Park, "Novel quantum dot enhancement film with a super-wide color gamut for LCD displays," J. Korean Phys. Soc. 72, 45-51 (2018).
  25. S. J. Kim, H. W. Jang, J.-G. Lee, J.-H. Ko, Y. W. Ko, and Y. Kim, "Study on improvements in the emission properties of quantum-dot film-based backlights," New Phys.: Sae Mulli 69, 861-866 (2019).
  26. G. J. Lee, J.-G. Lee, Y. Kim, T. Park, Y. W. Ko, and J.-H. Ko, "The effect of the reflective property of a reflection film on the performance of backlight units with quantum-dot films for LCD applications," J. Inf. Disp. 22, 55-61 (2021).
  27. Z. Liu, C.-H. Lin, B.-R. Hyun, C.-W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.-H. Ho, H.-C. Kuo, and J.-H. He, "Micro-light-emitting diodes with quantum dots in display technology," Light: Sci. Appl. 9, 83 (2020).
  28. S. C. Allen and J. Steckl, "ELiXIR-Solid-state luminaire with enhanced light extraction by internal reflection," J. Disp. Tech. 3, 155-159 (2007).
  29. C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, "Remote phosphor LED modules for general illumination: Toward 200 lm/W general lighting LED light sources," Proc. SPIE 7058, 70580M (2008).
  30. M.-T. Lin, S.-P. Ying, M.-Y. Lin, K.-Y. Tai, S.-C. Tai, C.-H. Liu, J.-C. Chen, and C.-C. Sun, "Design of the ring remote phosphor structure for phosphor-converted white-light-emitting diodes," Jpn. J. Appl. Phys. 49, 072101 (2010).
  31. H.-C. Kuo, C.-W. Hung, H.-C. Chen, J.-J. Chen, C.-H. Wang, C.-W. Sher, C.-C. Yeh, C.-C. Lin, C.-H. Chen, and Y.-J. Cheng, "Patterned structure of remote phosphor for phosphor-converted white LEDs," Opt. Express 19, A930-A936 (2011).
  32. S.-C. Park, I. Rhee, J.-Y. Kim, H. J. Bark, and J. Jeong, "Luminous efficiency of open remote phosphor-converted white-light-emitting diodes," J. Korean Phys. Soc. 60, 1191-1195 (2012).
  33. M.-H. Kim, H. J. Lee, J.-H. Ko, D. H. Kim, H. S. Kim, and Y. D. Kim, "Improvement of electro-optic characteristics of white light-emitting diodes by using transparent ceramic-based remote phosphors," Sci. Adv. Mater. 8, 342-348 (2016).
  34. J.-Y. Lien, C.-J. Chen, R.-K. Chiang, and S.-L. Wang, "High color-rendering warm-white lamps using quantum-dot color conversion films," Opt. Express 24, A1021-A1032 (2016).
  35. D. Tian, H. Ma, G. Huang, M. Gao, F. Cai, Y. Fang, C. Li, X. Jiang, A. Wang, S. Wang, and Z. Du, "A review on quantum dot light-emitting diodes: From materials to applications," Adv. Opt. Mater. 11, 2201965 (2023).
  36. F. P. G. de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, "Semiconductor quantum dots: Technological progress and future challenges," Science 373, eaaz8541 (2021).
  37. H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, "Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications," Adv. Mater. 31, 1804294 (2019).
  38. S. C. Hong, J. Baek, H. Lee, G. J. Lee, J.-G. Lee, J.-H. Ko, Y. W. Ko, Y. Kim, and T. Park, "Study on the improvement of the color rendering index of white LEDs by using red quantum dots," New Phys.: Sae Mulli 70, 698-704 (2020).
  39. S. C. Hong, S. T. Gwak, S. Park, G. J. Lee, J.-G. Lee, J.-H. Ko, S. Y. Joe, Y. Kim, T. Park, and Y. W. Ko, "Improvement of color-rendering characteristics of white light emitting diodes by using red quantum dot films," Curr. Appl. Phys. 31, 199-207 (2021).
  40. G. J. Lee, S. C. Hong, J.-G. Lee, J.-H. Ko, T. Park, Y. W. Ko, and S. Lushnikov, "Substantial improvement of color-rendering properties of conventional white LEDs using remote-type red quantum-dot caps," Nanomaterials 12, 1097 (2022).
  41. Y. W. Ko and Y. Kim, "Quantumdot powder and optical member using the same," Korean Patent 10-2018-0138017 (2018).
  42. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, 2nd ed. (Wiley, USA, 2010).
  43. J. S. Park, S. J. Kim, M. Jang, and J.-H. Ko, "Study on the emitting property and the color gamut of K2SiF6:Mn4+ phosphor-based white-light emitting diodes," New Phys.: Sae Mulli 69, 410-415 (2019).
  44. C.-F. Lai, Y.-C. Tien, H.-C. Tong, C.-Z. Zhong, and Y.-C. Lee, "High-performance quantum dot light-emitting diodes using chip-scale package structures with high reliability and wide color gamut for backlight displays," RCS Adv. 8, 35966 (2018).
  45. J.-G. Lee and J.-H. Ko, "Simulation study on the improvement of the luminance and the color uniformities of integrated quantum-dot backlights for LCD applications," J. Korean Phys. Soc. 77, 264-269 (2020).
  46. R. Zhu, Z. Luo, H. Chen, Y. Dong, and S.-T. Wu, "Realizing Rec. 2020 color gamut with quantum dot displays," Opt. Express 23, 23680 (2015).
  47. J.-H. Ko, "A look at display technology," (Crossstreet, Published date: Sep. 2020), https://crossroads.apctp.org/cop/bbs/000000000000/selectArticleDetail.do?nttId=1595 (Accessed date: Jun. 1, 2024).
  48. K. W. Houser, M. Wei, A. David, M. R. Krames, and X. S. Shen, "Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition," Opt. Express 21, 10393-10411 (2013).
  49. S. C. Hong and J.-H. Ko, "Effects of scattering particles on the color rendering and color dispersion of white light-emitting diodes studied by optical simulation," J. Korean Phys. Soc. 79, 631-637 (2021).
  50. J. M. Kwon, M. W. Kim, Y. J. Kim, H.-R. Kim, S. J. Lee, S. C. Hong, and J.-H. Ko, "Study of the effect of scattering particles on the optical properties of quantum dot-based white light emitting diodes," New Phys.: Sae Mulli 71, 725-730 (2021).
  51. S. C. Hong and J.-H. Ko, "Structural optimization of vertically-stacked white LEDs with a yellow phosphor plate and a red quantum-dot film," Nanomaterials 12, 2846 (2022).
  52. M. W. Kim, Y. J. Kim, H. K. Kwon, S. C. Hong, and J.-G. Ko, "Study on the emitting properties of layered light-emitting diodes consisting of remote yellow phosphors and red quantum dot films," New Phys.: Sae Mulli 72, 621-627 (2022).
  53. H.-R. Kim, D. G. You, J. H. You, J. W. Jang, M. K. Choi, S. C. Hong, J.-H. Ko, S.-Y. Joe, Y. Kim, T. Park, and Y. W. Ko, "Study of the effect of the transmittance of a diffuser plate on the optical characteristics of high-power quantum-dot illumination," Korean J. Opt. Photonics 32, 220-229 (2021).
  54. S. H. Jeong, A. Park, S. J. Kim, D. J. Park, and J.-H. Ko, "Study on the correlation between the efficiency of a multi-layer-type reflective polarizer and the reflecting property of a reflection film in backlights for liquid crystal displays," New Phys.: Sae Mulli 69, 101-106 (2019).
  55. E. Baek, B. Kim, S. Kim, J. Song, J. Yoo, S. M. Park, J.-M. Lee, and J.-H. Ko, "Color rendering index over 95 achieved by using light recycling process based on hybrid remote-type red quantum-dot components applied to conventional LED lighting devices," Nanomaterials 13, 2560 (2023).
  56. G. Lee, H. Lee, J. Cho, I. Choi, S. M. Park, and J.-H. Ko, "Realization of high-rendering luminaires using color conversion films for white LED applications," New Phys.: Sae Mulli 73, 703-710 (2023).
  57. J.-G. Lee, G. J. Lee, S. C. Hong, J.-H. Ko, T. Park, and Y. W. Ko, "Shape optimization of quantum-dot caps for high color-rendering white light-emitting diodes studied by optical simulation," J. Korean Phys. Soc. 78, 822-828 (2021).
  58. J. Shin, M. Seo, J. Cho, J. H. Ham, S. C. Hong, and J.-H. Ko, "Study on the effect of diffusion plate transmittance on luminescence properties of white LED lighting devices with red quantum dot caps," New Phys.: Sae Mulli 73, 465-471 (2023).