DOI QR코드

DOI QR Code

ON TRIPLE SEQUENCES IN GRADUAL 2-NORMED LINEAR SPACES

  • Received : 2023.11.03
  • Accepted : 2023.12.08
  • Published : 2024.06.25

Abstract

The concept of lacunary statistical convergence of triple sequences with respect to gradual 2-normed linear spaces is introduced in this research. We learn about its link to some inclusion and fundamental properties. The notion of lacunary statistical Cauchy triple sequences is introduced in the conclusion, and it is demonstrated that it is equivalent to the idea of lacunary statistical convergence.

Keywords

Acknowledgement

The abstract of this work was presented in the "2nd International e-Conference on Mathematical and Statistical Sciences: A Selcuk Meeting (ICOMSS'23)" which was held between June 5-7, 2023 in Selcuk University, Konya, Turkey.

References

  1. B. Altay and F. Basar, Some new spaces of double sequences, J. Math. Anal. Appl., 309 (2005), no. 1, 70-90. https://doi.org/10.1016/j.jmaa.2004.12.020
  2. C. Choudhury and S. Debnath, On I-convergence of sequences in gradual normed linear spaces, Facta Univ. Ser. Math. Inform. 36 (2021), no. 3, 595-604.
  3. C. Choudhury and S. Debnath, On lacunary statistical convergence of sequences in gradual normed linear spaces, An. Univ. Craiova Ser. Mat. Inform. 49 (2022), no. 1, 110-119.
  4. J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47-63. https://doi.org/10.1524/anly.1988.8.12.47
  5. I. A. Demirci and M. Gurdal, Lacunary statistical convergence for sets of triple sequences via Orlicz function, Theory Appl. Math. Comput. Sci. 11 (2021), no. 1, 1-13.
  6. D. Dubois and H. Prade, Gradual elements in a fuzzy set, Soft Comput. 12 (2007), 165-175. https://doi.org/10.1007/s00500-007-0187-6
  7. A. J. Dutta, A. Esi, and B. C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal. 4 (2013), no. 2, 16-22.
  8. A. Esi, Statistical convergence of triple sequences in topological groups, Ann. Univ. Craiova Ser. Math. Comput. Sci. Ser. 40 (2013), no. 1, 29-33.
  9. A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci. 9 (2015), no. 5, 2529-2534.
  10. M. Ettefagh, F. Y. Azari, and S. Etemad, On some topological properties in gradual normed spaces, Facta Univ. Ser. Math. Inform. 35 (2020), no. 3, 549-559.
  11. M. Ettefagh, S. Etemad, and F. Y. Azari, Some properties of sequences in gradual normed spaces, Asian-Eur. J. Math. 13 (2020), no. 4, 1-9.
  12. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), no. (3-4), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  13. J. Fortin, D. Dubois, and H. Fargier, Gradual numbers and their application to fuzzy interval analysis, IEEE Trans. Fuzzy Syst. 16 (2008), no. 2, 388-402. https://doi.org/10.1109/TFUZZ.2006.890680
  14. A. R. Freedman, J. J. Sember, and R. Raphael, Some p-Cesaro-type summability spaces, Proc. Lond. Math. Soc. S3-37 (1978), 508-520. https://doi.org/10.1112/plms/s3-37.3.508
  15. J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313. https://doi.org/10.1524/anly.1985.5.4.301
  16. J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187-1192. https://doi.org/10.1090/S0002-9939-1993-1181163-6
  17. J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), no. 1, 43-51. https://doi.org/10.2140/pjm.1993.160.43
  18. S. Gahler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115-118. https://doi.org/10.1002/mana.19630260109
  19. S. Gahler, Linear 2-normierte Raume, Math. Nachr. 28 (1965), ,1-43. https://doi.org/10.1002/mana.19640280102
  20. M. Gurdal and I. Acik, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11 (2008), no. 2, 349-354.
  21. M. Gurdal and M. B. Huban, On I-convergence of double sequences in the topology induced by random 2-norms, Mat. Vesnik 66 (2014), no. 1, 73-83.
  22. M. Gurdal and S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2 (2004), no. 1, 107-113.
  23. M. Gurdal and A. Sahiner, Extremal I-limit points of double sequences, Appl. Math. E-Notes 8 (2008), 131-137.
  24. M. Gurdal, A. Sahiner, and I. Acik, Approximation theory in 2-Banach spaces, Nonlinear Anal. 71 (2009), no. 5, 1654-1661. https://doi.org/10.1016/j.na.2009.01.030
  25. L. Lietard and D. Rocacher, Conditions with aggregates evaluated using gradual numbers, Control Cybernet. 38 (2009), no. 2, 395-417.
  26. S. A. Mohiuddine and M. Aiyub, Lacunary statistical convergence in random 2-normed spaces, Appl. Math. Inf. Sci. 6 (2012), no. 3, 518-585.
  27. M. Mursaleen and C. Belen, On statistical lacunary summability of double sequences, Filomat 28 (2014), no. 2, 231-239. https://doi.org/10.2298/FIL1402231M
  28. M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223-231. https://doi.org/10.1016/j.jmaa.2003.08.004
  29. A. Nabiev, S. Pehlivan, and M. Gurdal, On I-Cauchy sequences, Taiwanese J. Math. 11 (2007), no. 2, 569-576.
  30. F. Nuray, U. Ulusu, and E. Dundar, Lacunary statistical convergence of double sequences of sets, Soft Computing 20 (2016), no. 7, 2883-2888. https://doi.org/10.1007/s00500-015-1691-8
  31. S. Pehlivan, M. Gurdal, and B. Fisher, Lacunary statistical cluster points of sequences, Math. Commun. 11 (2006), 39-46.
  32. A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321. https://doi.org/10.1007/BF01448977
  33. I. Sadeqi and F. Y. Azari, Gradual normed linear space, Iran. J. Fuzzy Syst. 8 (2011), no. 5, 131-139.
  34. A. Sahiner, M. Gurdal, and F. K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math. 8 (2007), no. 2, 49-55.
  35. A. Sahiner, M. Gurdal, and T. Yigit, Ideal convergence characterization of the completion of linear n-normed spaces, Comput. Math. with Appl. 61 (2011), no. 3, 683-689. https://doi.org/10.1016/j.camwa.2010.12.015
  36. E. Savas and M. Gurdal, Generalized statistically convergent sequences of functions in fuzzy 2-normed spaces, J. Intell. Fuzzy Syst. 27 (2014), no. 4, 2067-2075. https://doi.org/10.3233/IFS-141172
  37. E. Savas and M. Gurdal, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Scienceasia 41 (2015), no. 4, 289-294. https://doi.org/10.2306/scienceasia1513-1874.2015.41.289
  38. E. Savas and M. Gurdal, I-statistical convergence in probabilistic normed spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77 (2015), no. 4, 195-204.
  39. E. Savas and R. F. Patterson, Lacunary statistical convergence of multiple sequences, Appl. Math. Lett. 19 (2006), no. 6, 527-534. https://doi.org/10.1016/j.aml.2005.06.018
  40. H. Sengul and M. Et, f-lacunary statistical convergence and strong f-lacunary summability of order α, Filomat 32 (2018), no. 13, 4513-4521. https://doi.org/10.2298/FIL1813513S
  41. E. A. Stock, Gradual numbers and fuzzy optimization, Appl. Math. Lett. Ph. D. thesis, University of Colorado Denver, Denver, America, 2010.