Acknowledgement
The abstract of this work was presented in the "2nd International e-Conference on Mathematical and Statistical Sciences: A Selcuk Meeting (ICOMSS'23)" which was held between June 5-7, 2023 in Selcuk University, Konya, Turkey.
References
- B. Altay and F. Basar, Some new spaces of double sequences, J. Math. Anal. Appl., 309 (2005), no. 1, 70-90. https://doi.org/10.1016/j.jmaa.2004.12.020
- C. Choudhury and S. Debnath, On I-convergence of sequences in gradual normed linear spaces, Facta Univ. Ser. Math. Inform. 36 (2021), no. 3, 595-604.
- C. Choudhury and S. Debnath, On lacunary statistical convergence of sequences in gradual normed linear spaces, An. Univ. Craiova Ser. Mat. Inform. 49 (2022), no. 1, 110-119.
- J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47-63. https://doi.org/10.1524/anly.1988.8.12.47
- I. A. Demirci and M. Gurdal, Lacunary statistical convergence for sets of triple sequences via Orlicz function, Theory Appl. Math. Comput. Sci. 11 (2021), no. 1, 1-13.
- D. Dubois and H. Prade, Gradual elements in a fuzzy set, Soft Comput. 12 (2007), 165-175. https://doi.org/10.1007/s00500-007-0187-6
- A. J. Dutta, A. Esi, and B. C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal. 4 (2013), no. 2, 16-22.
- A. Esi, Statistical convergence of triple sequences in topological groups, Ann. Univ. Craiova Ser. Math. Comput. Sci. Ser. 40 (2013), no. 1, 29-33.
- A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci. 9 (2015), no. 5, 2529-2534.
- M. Ettefagh, F. Y. Azari, and S. Etemad, On some topological properties in gradual normed spaces, Facta Univ. Ser. Math. Inform. 35 (2020), no. 3, 549-559.
- M. Ettefagh, S. Etemad, and F. Y. Azari, Some properties of sequences in gradual normed spaces, Asian-Eur. J. Math. 13 (2020), no. 4, 1-9.
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), no. (3-4), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
- J. Fortin, D. Dubois, and H. Fargier, Gradual numbers and their application to fuzzy interval analysis, IEEE Trans. Fuzzy Syst. 16 (2008), no. 2, 388-402. https://doi.org/10.1109/TFUZZ.2006.890680
- A. R. Freedman, J. J. Sember, and R. Raphael, Some p-Cesaro-type summability spaces, Proc. Lond. Math. Soc. S3-37 (1978), 508-520. https://doi.org/10.1112/plms/s3-37.3.508
- J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313. https://doi.org/10.1524/anly.1985.5.4.301
- J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187-1192. https://doi.org/10.1090/S0002-9939-1993-1181163-6
- J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), no. 1, 43-51. https://doi.org/10.2140/pjm.1993.160.43
- S. Gahler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115-118. https://doi.org/10.1002/mana.19630260109
- S. Gahler, Linear 2-normierte Raume, Math. Nachr. 28 (1965), ,1-43. https://doi.org/10.1002/mana.19640280102
- M. Gurdal and I. Acik, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11 (2008), no. 2, 349-354.
- M. Gurdal and M. B. Huban, On I-convergence of double sequences in the topology induced by random 2-norms, Mat. Vesnik 66 (2014), no. 1, 73-83.
- M. Gurdal and S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2 (2004), no. 1, 107-113.
- M. Gurdal and A. Sahiner, Extremal I-limit points of double sequences, Appl. Math. E-Notes 8 (2008), 131-137.
- M. Gurdal, A. Sahiner, and I. Acik, Approximation theory in 2-Banach spaces, Nonlinear Anal. 71 (2009), no. 5, 1654-1661. https://doi.org/10.1016/j.na.2009.01.030
- L. Lietard and D. Rocacher, Conditions with aggregates evaluated using gradual numbers, Control Cybernet. 38 (2009), no. 2, 395-417.
- S. A. Mohiuddine and M. Aiyub, Lacunary statistical convergence in random 2-normed spaces, Appl. Math. Inf. Sci. 6 (2012), no. 3, 518-585.
- M. Mursaleen and C. Belen, On statistical lacunary summability of double sequences, Filomat 28 (2014), no. 2, 231-239. https://doi.org/10.2298/FIL1402231M
- M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223-231. https://doi.org/10.1016/j.jmaa.2003.08.004
- A. Nabiev, S. Pehlivan, and M. Gurdal, On I-Cauchy sequences, Taiwanese J. Math. 11 (2007), no. 2, 569-576.
- F. Nuray, U. Ulusu, and E. Dundar, Lacunary statistical convergence of double sequences of sets, Soft Computing 20 (2016), no. 7, 2883-2888. https://doi.org/10.1007/s00500-015-1691-8
- S. Pehlivan, M. Gurdal, and B. Fisher, Lacunary statistical cluster points of sequences, Math. Commun. 11 (2006), 39-46.
- A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321. https://doi.org/10.1007/BF01448977
- I. Sadeqi and F. Y. Azari, Gradual normed linear space, Iran. J. Fuzzy Syst. 8 (2011), no. 5, 131-139.
- A. Sahiner, M. Gurdal, and F. K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math. 8 (2007), no. 2, 49-55.
- A. Sahiner, M. Gurdal, and T. Yigit, Ideal convergence characterization of the completion of linear n-normed spaces, Comput. Math. with Appl. 61 (2011), no. 3, 683-689. https://doi.org/10.1016/j.camwa.2010.12.015
- E. Savas and M. Gurdal, Generalized statistically convergent sequences of functions in fuzzy 2-normed spaces, J. Intell. Fuzzy Syst. 27 (2014), no. 4, 2067-2075. https://doi.org/10.3233/IFS-141172
- E. Savas and M. Gurdal, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Scienceasia 41 (2015), no. 4, 289-294. https://doi.org/10.2306/scienceasia1513-1874.2015.41.289
- E. Savas and M. Gurdal, I-statistical convergence in probabilistic normed spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77 (2015), no. 4, 195-204.
- E. Savas and R. F. Patterson, Lacunary statistical convergence of multiple sequences, Appl. Math. Lett. 19 (2006), no. 6, 527-534. https://doi.org/10.1016/j.aml.2005.06.018
- H. Sengul and M. Et, f-lacunary statistical convergence and strong f-lacunary summability of order α, Filomat 32 (2018), no. 13, 4513-4521. https://doi.org/10.2298/FIL1813513S
- E. A. Stock, Gradual numbers and fuzzy optimization, Appl. Math. Lett. Ph. D. thesis, University of Colorado Denver, Denver, America, 2010.