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ON TRIPLE SEQUENCES IN GRADUAL 2-NORMED

LINEAR SPACES

Işıl Açık Demirci∗ and Gülsüm Dermencioğlu

Abstract. The concept of lacunary statistical convergence of triple se-

quences with respect to gradual 2-normed linear spaces is introduced in

this research. We learn about its link to some inclusion and fundamental
properties. The notion of lacunary statistical Cauchy triple sequences is

introduced in the conclusion, and it is demonstrated that it is equivalent

to the idea of lacunary statistical convergence.

1. Introduction

Fast [12] independently created the idea of statistical convergence in 1951
using the concept of natural density. It is then analyzed in more detail in
relation to summability theory and sequence space in ([15], [21], [29], [36],
[37], [38]). For a comprehensive analysis of statistical convergence, one can
reference several studies of other mathematicians from different countries ([1],
[23], [30]). The notion of lacunary statistical convergence was first developed
by Fridy [16] in 1993 as one of the extensions of statistical convergence (for
further information on statistical convergence, please refer to [15]).

A lacunary sequence is an increasing integer sequence θ = (kn)n∈N∪{0}
satisfying k0 = 0 and hn = kn− kn−1 → ∞, as n → ∞. A real-valued sequence
(xk) is lacunary statistically convergent (abbreviated Sθ-convergent) to a real
number l, if for any ε > 0, limn

1
hn

|{k ∈ In : |xk − l| ≥ ε}| = 0, when In =

(kn−1, kn]. The symbol for l in this context is Sθ − lim (xk) = l or xk →
l (Sθ) , and it is known as the lacunary statistical limit of the sequence (xk) .
Additionally, Sθ denotes the collection of every statistical convergent lacunary
sequences associated with the lacunary sequence θ. Comparison of statistical
convergence and lacunary statistical convergence was demonstrated by Fridy
and Orhan in [17]. Freedman et al. [14] investigated the connection between
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the two sequence spaces |σ1| and Nθ in defined as follows:

|σ1| =

{
(xk) : for some l ∈ R, lim

n

1

n

n∑
k=1

|xk − l| = 0

}
and

Nθ =

{
(xk) : for some l ∈ R, lim

n

1

hn

∑
k∈In

|xk − l| = 0

}
,

In [27], [31], [40] numerous further references may be found for more details
on lacunary convergence and its generalizations.

Gähler [18] introduced the 2-metric in 1963. In the progress of his research,
Gähler [19] introduced the mathematical structure of 2-normed spaces, a gen-
eralization of normed linear spaces. Researchers have been studying this issue
for decades and have discovered a variety of intriguing aspects of it (see, [20],
[21], [22], [24], [26], [35]).

In 2008, as components of fuzzy intervals, gradual real numbers were ini-
tially introduced by Fortin et al. [13]. Gradual real numbers are essentially
understood by the assignment function that corresponds to them, which is de-
fined in the range (0, 1]. Therefore, it is possible to think of each real number
as a gradual number with a constant assignment function. While maintaining
all of the algebraic characteristics of classical real numbers, these gradual real
numbers have applications in computation and optimization issues. The idea
of gradual normed linear space first came up in 2011 by Sadeqi and Azari [33].
They examined a variety of features of the space from both topological and
algebraic viewpoints. One may consult [6], [25], [41] for a thorough research of
gradual real numbers. The exploration of sequences convergence within gradual
normed linear spaces remains relatively unexplored, still in its nascent stages.
The existing body of research, however, demonstrates a notable resemblance
in the convergence behavior of sequences within gradual normed linear spaces.

Ettefagh and his colleagues [11] recently introduced the concept of sequence
convergence in gradually normed linear spaces. Their work included the inves-
tigation of various topological properties (as detailed in [10]). In a separate
work by Choudhury and Debnath ([2], [3]) the notion of sequence convergence
in gradual normed linear spaces was extended to ideal convergence and lacu-
nary statistical convergence. Consequently, we can state that the logical and
natural next step of the research is the lacunary statistical convergence of triple
sequences in gradual 2-normed linear spaces.

2. Preliminaries

Definition 2.1. [13] An assignment function, represented as Ar̃ : (0, 1] →
R, describes a gradual real number, denoted as r̃. G (R) denotes the set that
contains all gradually increasing real numbers. A gradual real number r̃ is
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considered non-negative when for every ξ ∈ (0, 1], Ar̃(ξ) ≥ 0. G∗(R) stands for
the set of all gradual real numbers that are not negative.

The following definitions describe the gradual operations for elements in
G(R):

Definition 2.2. Assuming ∗ represent an arbitrary operation within the
real numbers set R, and given r̃1, r̃2 ∈ G(R) with assignment functions. Ar̃1

and Ar̃2 , we define r̃1 ∗ r̃2 ∈ G(R) using the assignment function Ar̃1∗r̃2 , as
specified by Ar̃1∗r̃2(ξ) = Ar̃1(ξ) ∗Ar̃2(ξ),∀ξ ∈ (0, 1].

The gradual summation of r̃1 and r̃2, r̃1 + r̃2, is determined as Ar̃1+r̃2 (ξ) =
Ar̃1 (ξ) + Ar̃2 (ξ) and the gradual scalar product with cr̃ (where c ∈ R), is
determined as Acr̃ (ξ) = cAr̃ (ξ) for ∀ξ ∈ (0, 1] [13].

For each ∀ξ ∈ (0, 1], the constant gradual real number p̃ is defined. Its
identity is represented by the constant assignment function Ap̃ (ξ) = p, which
represents a real number p ∈ R.

Specifically, the constant gradual numbers 0̃ and 1̃ are defined by A0̃ (ξ) = 0
and A1̃ (ξ) = 1, respectively. It is simple to demonstrate that G(R) becomes
a true vector space when equipped with gradual addition and gradual scalar
multiplication.

Definition 2.3. [33] Consider X as a real vector space. We define the
function ∥.∥G : X → G∗(R) as a gradual norm on X if, for any ξ ∈ (0, 1], for
any x, y ∈ X, the first three requirements are true:

(G1) A∥x∥G
(ξ) = A0̃ (ξ) if and only if x = 0;

(G2) A∥λx∥G
(ξ) = |λ|A∥x∥G

(ξ) for any λ ∈ R;

(G3) A∥x+y∥G
(ξ) ≤ A∥x∥G

(ξ) +A∥y∥G
(ξ) .

Gradual normed linear space (GNLS) is a term used to describe the pair
(X, ∥.∥G).

Example 2.4. [33] Consider a space X = Rm; so x = (x1, x2, . . . , xm) ∈
Rm, ξ ∈ (0, 1] , define ∥.∥G by

A∥x∥G
(ξ) = eξ

m∑
i=1

|xi| .

In this context on Rm, ∥.∥G is a gradual norm and (Rm, ∥.∥G) is a GNLS.

Definition 2.5. Suppose we have a sequence (xk) within the GNLS (X, ∥.∥G).
We say that (xk) is gradually bounded if, for any ξ ∈ (0, 1], there is B = B (ξ) >
0 such that for all k ∈ N, A∥xk∥G

≤ B holds true.

Definition 2.6. Consider a sequence (xk) within the GNLS (X, ∥.∥G). We
can state that (xk) gradually converges to x ∈ X, for all ξ ∈ (0, 1] and ε > 0,
by asserting that for A∥xk−x∥G

(ξ) < ε,∀k ≥ N, there exists N(= Nε (ξ)) ∈ N.
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Definition 2.7. Consider a sequence (xk) within the GNLS (X, ∥.∥G). We
can state that (xk) is gradually Cauchy, for all ∀ξ ∈ (0, 1] and ε > 0, by
asserting that for A∥xk−xj∥G

(ξ) < ε,∀k, j ≥ N, there exists N(= Nε (ξ)) ∈ N.

Theorem 2.8. [11] Any sequence that converges gradually in X is by def-
inition a gradually Cauchy sequence if we consider (X, ∥.∥G) to be a GNLS.

Definition 2.9. [3] Take (xk) stands for a real-valued sequence and θ =
(kn) for a lacunary sequence. We express (xk) as lacunary statistically Cauchy
or Sθ-Cauchy if there exists a (xk′(n)) subsequence of (xk) satisfying the fol-
lowing three conditions:

(i) k′ (n) ∈ In, for every n;
(ii)

(
xk′(n)

)
→ x(n → ∞);

(iii) For every ε > 0, limn
1
hn

∣∣{k ∈ In :
∣∣xk − xk′(n)

∣∣ ≥ ε
}∣∣ = 0.

Theorem 2.10. Sθ-convergence is a prerequisite for the real-valued se-
quence (xk) and sufficient condition for it to be Sθ-Cauchy.

Definition 2.11.

|σ1 (G)| =

{
(xk) : for some x ∈ X and ∀ξ ∈ (0, 1], lim

n

1

n

(
n∑

k=1

A∥xk−x∥G
(ξ)

)
= 0

}
and

Nθ (G) =

{
(xk) : for some x ∈ X and ∀ξ ∈ (0, 1] , lim

n

1

hn

(∑
k∈In

A∥xk−x∥G
(ξ)

)
= 0

}
.

(X, ∥.∥G) might be any GNLS. As mentioned above, the new sequence spaces
|σ1 (G)| and Nθ (G) are defined.

Definition 2.12. Consider a sequence (xk) in GNLS (X, ∥.∥G). For every

ξ ∈ (0, 1] and ε > 0, when the natural density of the set
{
k ∈ N : A∥xk−x∥G

(ξ) ≥ ε
}
=

0, we specify that the sequence (xk) is gradually statistically convergent to
x ∈ X, so we denote it as S (G) convergent. Representing, S (G)− limxk = x
or xk → x (S (G)) is written. Additionally, the collection of all gradually sta-
tistically convergent sequences in X is denoted by S(G).

Definition 2.13. X is a vector space on the real space R with dimension
greater than 1, when the following conditions are satisfied on the function
∥·, ·∥ : X ×X → R≥0 :

(i) For every x, y ∈ X, ∥x, y∥ = 0 if and only if x and y are linearly depen-
dent,

(ii) ∥y, x∥ = ∥x, y∥ for all x, y ∈ X,
(iii) |α| ∥x, y∥ = ∥αx, y∥ , whenever α ∈ R and x, y ∈ X,
(iv) ∥y + x, z∥ ≤ ∥y, z∥+ ∥x, z∥ for all x, y, z ∈ X.
The pair (X, ∥·, ·∥) is called a 2-normed space [18], [19].
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Example 2.14. Let us take X as the Euclidean plane R2, where the metric
used is the area of the parallelogram formed by the 2-norm ∥x, y∥ := x and y
vectors. This norm can be explicitly defined by the formula:

∥x, y∥ = |x1y2 − x2y1| , where x = (x1, x2), y = (y1, y2).

Pringsheim [32] provided the definition of the convergence of double se-
quences in 1900. The other researchers continued Şahiner et al. [34] initially
suggested the idea of triple sequences (see [5], [7], [8], [9], [28]). Recall the
concept of statistical convergence for triple sequences:

Definition 2.15. Let K (n,m, o) be the number of (j, k, l) in K such that
j ≤ n, k ≤ m and l ≤ o, and let K ⊂ N3 be a three-dimensional set of positive
integers. Hence, the three-dimensional analog of the natural density is defined
as follows:

A set K ⊂ N3’s lower asymptotic density is denoted by the symbol δ3(K) =

P − lim infnmo
K(n,m,o)

nmo . So when
(

K(n,m,o)
nmo

)
has a limit in the sense of Pring-

sheim, K is said to have a triple natural density and is defined as δ3 (K) =

P − limnmo
K(n,m,o)

nmo .

Definition 2.16. A real (complex) triple sequence x = (xjkl) is the name
given to the function x : N3 → R(or C). Given that |xjkl − L| < ε whenever
j, k, l > N , there is N ∈ N such that for all ε > 0. Thus a triple sequence
x = (xjkl) converges to a number L in Pringsheim’s sense.

Definition 2.17. The space of all P -convergent sequences will be repre-
sented by the symbol c3. A bounded triple sequence is one for which |xjkl| < M
for all (j, k, l) exists as a positive number M and denotes such bounded triple
sequences by ∥x∥(∞,3) = supjkl |xjkl| < ∞. We will also use the symbol l3∞ to

indicate the set of all bounded triple sequences. A P -convergent triple sequence
need not be bounded, in contrast to the situation for a single sequence.

Definition 2.18. If for every ε > 0, δ3
({

(j, k, l) ∈ N3 : |xjkl − L| ≥ ε
})

=
0, then a real triple sequence x = (xjkl) is statistically convergent to L in
Pringsheim’s sense.

Definition 2.19. By triple lacunary sequence, we mean an increasing se-
quence θ3 = θrst = {(jr, ks, lt)} of positive integers satisfying: j0 = 0, hr =
jr − jr−1 → ∞ as r → ∞, k0 = 0, hs = ks − ks−1 → ∞ as s → ∞ and
l0 = 0, ht = lt − lt−1 → ∞ as t → ∞.

Note that krst = jrkslt, hrst = hrhsht and θrst we denote the intervals
as follows: Irst = {(j, k, l) : jr−1 < j ≤ jr, ks−1 < k ≤ ks, lt−1 < l ≤ lt} , qr =
jr

jr−1
, qs =

ks

ks−1
, qt =

lt
lt−1

and qrst = qrqsqt.
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3. Main results

Throughout the article, X,x = {xjkl} and θ3 = {θnop} will be taken as a
real vector space, a triple sequence and any triple lacunary sequence in the G2-
NLS (X, ∥·, ·∥G) , respectively. To keep things simple, we refer to the m-tuple
(0, 0, ..., 0, 0) as 0.

Definition 3.1. If for every ξ ∈ (0, 1] and for any x, y, z ∈ X, the function
∥·, ·∥G : X ×X → G∗ (R) is determined to be a gradual 2-norm on X. These
conditions are met:

(G21)A∥x,z∥G
(ξ) = A0̃ (ξ) iff x and z are linear dependent;

(G22) |λ|A∥x,z∥G
(ξ) = A∥λx,z∥G

(ξ) whenever λ ∈ R;
(G23)A∥y+x,z∥G

(ξ) ≤ A∥y,z∥G
(ξ) +A∥x,z∥G

(ξ) .

When the pair is (X, ∥·, ·∥G) it is called a gradual 2-normed linear space
(G2-NLS).

Definition 3.2. Suppose that X is a d-dimensional space with 2 ≤ d < ∞.
A 2-norm on X is a function ∥·, ·∥G : X ×X → G∗ (R) . Then, if for any z ∈
X, ε > 0 and ξ ∈ (0, 1], it says that {xjkl} is statistically gradually convergent
to R ∈ X.

δ3

({
(j, k, l) ∈ Inop : A∥xjkl−R,z∥

G
(ξ) ≥ ε

})
= 0.

Thus, we can write st3 (G2)− limxjkl = R or xjkl → R {st3 (G2)} .

Definition 3.3. Let X be a d-dimensional space with 2 ≤ d < ∞. A 2-
norm on X is a function ∥·, ·∥G : X ×X → G∗ (R) . For each z ∈ X, ε > 0 and
ξ ∈ (0, 1], it is said that {xjkl} is gradually Sθ3-convergent to R ∈ X

lim
nop

1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥
G
(ξ) ≥ ε

}∣∣∣ = 0.

In this case, we write Sθ3(G2) − limxjkl = R or xjkl → R {Sθ3 (G2)} . Addi-
tionally, let the collection of all Sθ3-convergent triple sequences in X be known
as Sθ3 (G2) .

Example 3.4. Take X = Rm and ∥·, ·∥G to be the 2-norm as defined in
Example 2.1.

Defined by θnop =

{
0, nop = 0

3nop, nop ≥ 1
. The triple sequence {xjkl} ∈ Rm

was then defined as

xjkl =

{
(0, 0, . . . , 0,m) , if j = r2, k = s2, l = t2; (r, s, t) ∈ N3

(0, 0, . . . , 0, 0) , otherwise

is gradually Sθ3 -convergent 0 in Rm.



On triple sequences in gradual 2-normed linear spaces 297

We have, for all z ∈ X

lim
nop

1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−0,z∥
G
(ξ) ≥ ε

}∣∣∣
= 3× lim

nop

1

3nop
{
j ∈

(
3n−1, 3n

]
, k ∈

(
3o−1, 3o

]
, l ∈

(
3p−1, 3p

]
:

A∥xjkl−0,z∥
G
(ξ) ≥ ε

}∣∣∣
≤ 3× lim

nop

1

3nop

∣∣∣{j ≤ 3n, k ≤ 3o, l ≤ 3p : A∥xjkl−0,z∥
G
(ξ) ≥ ε

}∣∣∣
≤ 3× lim

nop

[√
nop

]
nop

= 0

where the greatest integer “ ≤ rst” is denoted by [rts].

Hence we conclude that xjkl → 0 {Sθ3 (G2)}.

Example 3.5. Take X = R and also take ∥·∥G be the norm defined as
A∥R∥G

= eξ |R| for any R ∈ R. Consider the triple sequence θ3 = {θnop} defined

in Example 3.1. Then x defined as xjkl = j2k2l2 is not Sθ3 (G2)-convergent.

Rationale: For every R ∈ R, take R ≤ 0 or R > 0. In all of the ensuing
circumstances, x will not Sθ3 (G2)-converge to R.

Situation-I : Whenever R ≤ 0, get ε = 1
2e

ξ. Next, we’ve got

lim
nop

1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥
G
(ξ) ≥ ε

}∣∣∣
= lim

nop

3

nop

∣∣∣∣{j ∈ (3n−1, 3n
]
, k ∈

(
3o−1, 3o

]
, l ∈

(
3p−1, 3p

]
: A∥j2k2l2−R,z∥G

(ξ) ≥ 1

2
eξ
}∣∣∣∣

= 1,

for all z ∈ X.

Situation-II : If R > 0, then there are (j0, k0, l0) ∈ N3 such that xj0k0l0−1 ≤
R ≤ xj0k0l0 .

Subsituation-I : Whenever 0 < R < 1, get ε = eξ

2 min {R, 1−R} . The
ability to illustrate the following is therefore easy:

limnop
1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥
G
(ξ) ≥ ε

}∣∣∣ = 1, for all z ∈ X.

Subsituation-II : IfR ≥ 1, then choose ε = eξ

2 min {R− xj0k0l0−1, xj0k0l0 −R} .
The ability to illustrate the following is therefore easy:

limnop
1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥
G
(ξ) ≥ ε

}∣∣∣ = 1, for all z ∈ X.
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Definition 3.6. We define the new sequence spaces |σ1,1,1 (G2)| andNθ3 (G2)
as follows:

|σ1,1,1 (G2)| = {{xjkl} : for some R ∈ X and ∀ξ ∈ (0, 1] ,

lim
nop

1

nop

 n,o,p∑
j,k,l=1,1,1

A∥xjkl−R,z∥
G
(ξ)

 = 0


and

Nθ3 (G2) = {{xjkl} : for some R ∈ X and ∀ξ ∈ (0, 1] ,

lim
nop

1

hnop

 ∑
(j,k,l)∈In

A∥xjkl−R,z∥
G
(ξ)

 = 0

 ,

for all z ∈ X.

Theorem 3.7. The following applies:
(i) If xjkl → R {Nθ3 (G2)} , then xjkl → R {Sθ3 (G2)} but the reverse is not

true.
(ii) If {xjkl} is gradually bounded, the reverse of (i) holds.

Proof. (i) Assume ε > 0 be arbitrary and xjkl → R {Nθ3 (G2)} . Then, we
shall write ∑

(j,k,l)∈Inop

A∥xjkl−R,z∥
G
(ξ)

≥
∑

(j,k,l)∈Inop

A∥xjkl−R,z∥
G

(ξ)≥ε

A∥xjkl−R,z∥
G
(ξ)

≥ ε
∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥

G
(ξ) ≥ ε

}∣∣∣ , for all z ∈ X.

Next, we create a counterexample while taking into account the gradual 2-
normed space (Rm, ∥·, ·∥G), where ∥·, ·∥G is the 2-norm defined in Example 2.1.

Let θ3 be given and x be



1 2 3 · · ·
[

3
√
hnop

]
0 · · ·

2 2 3 · · ·
[

3
√
hnop

]
0 · · ·

...
...

...
...

...
...

...
2
[

3
√
hnop

]
· · · · · ·

[
3
√
hnop

]
0 · · ·

0 0 0 · · · 0 0 · · ·
...

...
...

...
...

...
. . .


, in

[39]. Then, we have for any ε > 0 with 0 < εeξ ≤ 1,

lim
nop

1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−0,z∥
G
(ξ) ≥ ε

}∣∣∣ = lim
nop

[
3
√

hnop

]
hnop

= 0,
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for all z ∈ X.
So, xjkl → 0 {Sθ3 (G2)} . And on the other side,

lim
nop

1

hnop

 ∑
(j,k,l)∈Inop

A∥xjkl−0,z∥
G
(ξ)


= lim

nop

[
3
√
hnop

] ([
3
√
hnop

] ([
3
√
hnop

]
+ 1
))

2hnop

=
1

2
̸= 0,

for all z ∈ X, therefore xjkl ↛ 0 {Sθ3 (G2)} .
(ii) Assume xjkl → R {Sθ3 (G2)} and x is gradually bounded, say thus, if x is

gradual bounded, it signifies the presence of a positive constant B = B (ξ) > 0,
satisfying A∥xjkl−R,z∥

G
≤ B for every z ∈ X and (j, k, l) ∈ N3. Then for any

ε > 0, we have

1

hnop

 ∑
(j,k,l)∈Inop

A∥xjkl−R,z∥
G
(ξ)

 =
1

hnop


∑

(j,k,l)∈Inop

A∥xjkl−R,z∥
G

(ξ)≥ε

A∥xjkl−R,z∥
G
(ξ)



+
1

hnop


∑

(j,k,l)∈Inop

A∥xjkl−R,z∥
G

(ξ)<ε

A∥xjkl−R,z∥
G
(ξ)


≤ B

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥
G
(ξ) ≥ ε

}∣∣∣
+ε,

for all z ∈ X, which consequently implies that xjkl → R {Nθ3 (G2)}.

Theorem 3.8. xjkl → R1 {Sθ3 (G2)} for a fixed θ3. Then R1 is unique.

Proof. If possible suppose xjkl → R1 {Sθ3 (G2)} and xjkl → R2 {Sθ3 (G2)} (R1 ̸=
R2) in X. It follows that

lim
nop

1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R1,z∥G
(ξ) ≥ ε

}∣∣∣ = 0

and

lim
nop

1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R2,z∥G
(ξ) ≥ ε

}∣∣∣ = 0,

for all ξ ∈ (0, 1] , ε > 0 and z ∈ X. Therefore,

M =
{
(j, k, l) ∈ Inop : A∥xjkl−R1,z∥G

(ξ) < ε
}
∩
{
(j, k, l) ∈ Inop : A∥xjkl−R2,z∥G

(ξ) < ε
}
̸= ∅.
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Choose ε = A∥R1−R2
2 ,z∥

G

(ξ). Then, for these r, s, t ∈ M,

2ε = A∥R1−R2,z∥G
(ξ)

≤ A∥xrst−R1,z∥G
(ξ) +A∥xrst−R2,z∥G

(ξ)

< ε+ ε = 2ε for all z ∈ X,

we have a contradiction. So, R1 = R2 must be.

Theorem 3.9. Take {xjkl} be a triple sequence and other {yjkl} be a triple
sequence in the G2-NLS (X, ∥·, ·∥G) . Then,

(i) xjkl + yjkl → R1 +R2 {Sθ3 (G2)} and
(ii) For any c ∈ R, cxjkl → cR1 {Sθ3 (G2)}.

Proof. i) When xjkl → R1 {Sθ3 (G2)} and yjkl → R2 {Sθ3 (G2)} , so for
every ξ ∈ (0, 1] and ε > 0,

(3.1) lim
nop

1

hnop
|C1| = 0 and lim

nop

1

hnop
|C2| = 0,

where

C1 =
{
(j, k, l) ∈ Inop : A∥xjkl−R1,z∥G

(ξ) ≥ ε

2

}
and

C2 =
{
(j, k, l) ∈ Inop : A∥yjkl−R2,z∥G

(ξ) ≥ ε

2

}
, z ∈ X.

Now since the inclusion{
(j, k, l) ∈ Inop : A∥xjkl+yjkl−R1−R2,z∥G

(ξ) ≥ ε
}
⊆ C1 ∪ C2

holds, we must have

1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl+yjkl−R1−R2,z∥G
(ξ) ≥ ε

}∣∣∣ ≤ 1

hnop
|C1|+

1

hnop
|C2|

and consequently from (3.1) we have,

limnop
1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl+yjkl−R1−R2,z∥G
(ξ) ≥ ε

}∣∣∣ = 0, z ∈ X.

And this concludes the evidence.
ii) This section is skipped because it is easy to prove.

We shall investigate the inclusion relationships between the sets S (G2) and
Sθ3 (G2) subject to certain restrictions on θ3 in the following lemmas. We will
use qnop = qnqoqp.

Lemma 3.10. S (G2)− limxjkl = R implies Sθ3 (G2)− limxjkl = R if and
only if lim infnop qnop > 1.

Moreover, if lim infnop qnop = 1, in that case a triple sequence that is S (G2)-
convergent but not Sθ3 (G2)-convergent to any limit exists.
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Proof. Take lim infnop qnop > 1. Under the condition of sufficiently large
n, o, p; there exists a v > 0, ensuring that qn > 1 + ν, qo > 1 + ν and qp >
1 + ν which means (jn/hn) ≤ (1 + v) /v, (ko/ho) ≤ (1 + v) /v and (lp/hp) ≤
(1 + v) /v. Now as S (G2) − limxjkl = R, so for any ε > 0 and for sufficiently
large n, o, p; the next inequation

1

hnop

∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥ (ξ) ≥ ε
}∣∣

=
knop
hnop

1

knop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥
G
(ξ) ≥ ε

}∣∣∣
≤

(
1 + v

v

)3
1

knop

∣∣∣{j ≤ jn, k ≤ ko, l ≤ lp : A∥xjkl−R,z∥
G
(ξ) ≥ ε

}∣∣∣ ,
for all z ∈ X, yields that Sθ3 (G2)− limxjkl = R.

As for the opposite, assume lim infnop qnop = 1. We want to build a triple
sequence that is S (G2)-convergent but not to any limit Sθ3 (G2)-convergent.
Continuing as in ([14], [17]), we can choose a triple subsequence (knaobpc) of
the lacunary triple sequence θ3 satisfying:

(jna−1/jna) > a/ (a+ 1) and
(
jna−1/jn(a−1)

)
> a where na − n(a−1) ≥ 2;

(kob−1/kob) > b/ (b+ 1) and
(
kob−1/ko(b−1)

)
> b where ob − o(b−1) ≥ 2;

(lpc−1/lpc) > c/ (c+ 1) and
(
lpc−1/lp(c−1)

)
> c where pc − p(c−1) ≥ 2.

The following is how a gradually bounded triple sequence x in (Rm, ∥·, ·∥G) is
defined (in which ∥·, ·∥G is the 2-norm as described in Example 2.1):

xjkl =

{
(0, 0, . . . , 0, 1) , (j, k, l) ∈ Inaobpc

; a, b, c = 1, 2, . . .
0, otherwise

.

Then, for every R ∈ Rm, we have

(1/hnaobpc
)

 ∑
(j,k,l)∈Inaobpc

A∥xjkl−R,z∥
G
(ξ)

 = A∥(0,0,...,0,1)−R,z∥G
(ξ) ; a, b, c = 1, 2, . . .

and

(1/hnaobpc
)

 ∑
(j,k,l)∈Inaobpc

A∥xjkl−R,z∥
G
(ξ)

 = A∥R,z∥G
(ξ)

for all z ∈ X and n ̸= na, o ̸= ob, p ̸= pc, which as a consequence gives

lim
nop

(1/hnop)
∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥

G
(ξ) ≥ ε

}∣∣∣ ̸= 0,

for all z ∈ X, i.e., xjkl ↛ R {Sθ3 (G2)} .
However {xjkl} is S (G2)-convergent, since if α, β, γ are any integers are big

enough, that is sufficiently large, we can have just a, b, c supplying jna−1 < α ≤
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jna
, kob−1 < β ≤ kob , lpc−1 < γ ≤ lpc

, and then

1/ (αβγ)

 α,β,γ∑
j=1,k=1,l=1

A∥xjkl,z∥G
(ξ)


≤ ((jna−1kob−1lpc−1 + hnaobpc) / (jna−1kob−1lpc−1))

< 2/ (abc) , for all z ∈ X

as α, β, γ → ∞, it follows that a, b, c → ∞. Hence {xjkl} ∈ |σ1,1,1 (G2)|0 .
Hence, using the proof technique [4] of Theorem 2.1, it can be shown that
{xjkl} is S (G2)-convergent.

Lemma 3.11. S (G2) − limxjkl = R implies Sθ3 (G2) − limxjkl = R iff
lim supnop q < ∞. Additionally, if lim supnop qnop = ∞,, then a triple sequence
that is Sθ3(G2)-convergent but not S (G2)-convergent to any limit exists.

Proof. Let us assume first lim supnop qnop < ∞ with Sθ3 (G2)−limxjkl = R.
So that qnop < B takes for any n, o and p, such that is ∞ > B > 0. Take Nnop

denote the set’s cardinal number,
{
(j, k, l) ∈ Inop : A∥xjkl−R,z∥

G
(ξ) ≥ ε

}
, for

all z ∈ X. Then, by our assumption, for given η > 0, there are n0, o0, p0 ∈ N
such that ∀n ≥ n0, o ≥ o0, p ≥ p0; (Nnop/hnop) < η.
Let M = max {Nnop : 1 ≤ n ≤ n0, 1 ≤ o ≤ o0, 1 ≤ p ≤ p0} and let α, β, γ be
three integers satisfying j(n−1) < α < jn, k(o−1) < β < ko, l(p−1) < γ < lp.
Then we have,

(1/αβγ)
∣∣∣{j ≤ α, k ≤ β, l ≤ γ : A∥xjkl−R,z∥

G
(ξ) ≥ ε

}∣∣∣
≤

(
1/
(
j(n−1)k(o−1)l(p−1)

)) ∣∣∣{j ≤ jn, k ≤ ko, l ≤ lp : A∥xjkl−R,z∥
G
(ξ) ≥ ε

}∣∣∣
=

(
1/
(
j(n−1)k(o−1)l(p−1)

))
{N111 +N222 + · · ·+Nn0o0p0

+Nn0+1o0+1p0+1

+ · · ·+Nnop}
≤

(
M/

(
j(n−1)k(o−1)l(p−1)

))
n0o0p0

+
(
1/
(
j(n−1)k(o−1)l(p−1)

))
{(hn0+1o0+1p0+1Nn0+1o0+1p0+1) /hn0+1o0+1p0+1

+ · · ·+ (hnopNnop) /hnop}
≤

(
n0o0p0M/j(n−1)k(o−1)l(p−1)

)
+1/j(n−1)k(o−1)l(p−1) sup

n>n0,o>o0,p>p0

(Nnop/hnop) {hn0+1o0+1p0+1 + · · ·+ hnop}

≤
(
(n0o0p0M) /

(
j(n−1)k(o−1)l(p−1)

))
+η (jnkolp − jn0

ko0 lp0
) /
(
j(n−1)k(o−1)l(p−1)

)
≤ (n0o0p0M) /

(
j(n−1)k(o−1)l(p−1)

)
+ ηqnop

≤ (n0o0p0M) /
(
j(n−1)k(o−1)l(p−1)

)
+ ηB, for all z ∈ X

which immediately gives S (G2)− limxjkl = R.
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Conversely, suppose lim supnop qnop = ∞. The triple sequence we want
to start with is Sθ3 (G2)-convergent but not S (G2)-convergent to any limit.
Following the idea in ([14], [17]), we might construct a triple subsequence
{jnakob lpc} of the triple lacunary sequence θ3 = (jnkolp) such that qnaobpc >
abc. Now we define the following gradually bounded triple sequence {xjkl} in
(Rm, ∥·, ·∥G) (which in, the norm referenced in Example 2.1 is ∥·, ·∥G):

xjkl =

 (0, 0, . . . , 0, 1) jna−1 < j < 2jna−1, kob−1 < k < 2kob−1,
lpc−1 < l < 2lpc−1; a, b, c = 1, 2, . . .

0, otherwise
.

Proceeding as [14] one can show x ∈ Nθ3 (G2) but x /∈ |σ1 (G2)| . Hence Theo-
rem 1 of [17] implies that x is Sθ3 (G2)-convergent but it can be easily shown
that x is not S (G2)-convergent using a similar procedure of Theorem 2.1 of
[4].

The two lemmas mentioned before combined allow us to arrive at the fol-
lowing theorem:

Theorem 3.12. S (G2) − limxjkl = Sθ3 (G2) − limxjkl if and only if 1 ≤
lim infnop qnop ≤ lim supnop qnop < ∞.

Definition 3.13. Let θ3 = {jnkolp} be a triple lacunary sequence. If x has
a triple subsequence

{
xj′(n)k′(o)l′(p)

}
and all three of the following requirements

are true, then x is said to be gradually lacunary statistical Cauchy (in the short
Sθ3 (G2)-Cauchy):

(i) (j′ (n) , k′ (o) , l′ (p)) ∈ Inop for any, n, o, p,
(ii) For someR ∈ X,

{
xj′(n)k′(o)l′(p)

}
is gradually convergent toR (n, o, p → ∞),

(iii)

lim
nop

1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−xj′(n)k′(o)l′(p),z∥G

(ξ) ≥ ε
}∣∣∣ = 0,

for any ε > 0, ξ ∈ (0, 1] and z ∈ X.

Theorem 3.14. x is Sθ3 (G2)-convergent if and only if x is Sθ3 (G2)-
Cauchy.

Proof. For each e ∈ N, suppose xjkl → R {Sθ3 (G2)} and

K (ξ, e) =
{
(j, k, l) ∈ N3 : A∥xjkl−R,z∥

G
(ξ) < 1/e

}
.

Hence,K (ξ, e) ⊇ K (ξ, e+ 1) holds, for any e ∈ N and we have limnop
|K(ξ,e)∩Inop|

hnop
=

1. Choose s1, t1, w1 such that n ≥ s1, o ≥ t1, p ≥ w1 implies
|K(ξ,e)∩Inop|

hnop
> 0

i.e., K (ξ, 1) ∩ Inop ̸= ∅. Next choose s2 > s1, t2 > t1, w2 > w1 such that
n ≥ s2, o ≥ t2, p ≥ w2 implies K (ξ, 2) ∩ Inop ̸= ∅. Then, for each n, o, p satis-
fying s1 < n ≤ s2, t1 < o ≤ t2, w1 < p ≤ w2, choose (j′ (n) , k′ (o) , l′ (p)) ∈ Inop
such that (j′ (n) , k′ (o) , l′ (p)) ∈ Inop∩K (ξ, 1) , i.e., A∥xj′(n)k′(o)l′(p)−R,z∥

G

(ξ) <

1, for all z ∈ X. Proceeding like this, one can choose s(e+1) > se, t(e+1) >
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te, w(e+1) > we such that n > s(e+1), o > t(e+1), p > w(e+1) refers K (ξ, e+ 1)∩
Inop ̸= ∅. Hence, se ≤ r < s(e+1), te ≤ o < t(e+1), we ≤ p < w(e+1), for every
s, t, w, choose (j′ (n) , k′ (o) , l′ (p)) ∈ Inop ∩K (ξ, e), i.e.,

(3.2) A∥xj′(n)k′(o)l′(p)−R,z∥
G

(ξ) < 1/e, for all z ∈ X.

Hence, we have (j′ (n) , k′ (o) , l′ (p)) ∈ Inop for any s, t, w and 3.2 implies
that

{
xj′(n)k′(o)l′(p)

}
is gradually convergent to R (n, o, p → ∞) .

Therefore we get

1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−xj′(n)k′(o)l′(p),z∥G

(ξ) ≥ ε
}∣∣∣

≤ 1

hnop

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥
G
(ξ) ≥ ε/2

}∣∣∣ ,
for any ξ ∈ (0, 1], ε > 0 and z ∈ X.

Using the following assumption, the consequence of the aforementioned in-
equation is given by xjkl → x {Sθ3 (G2)} and the fact that

{
xj′(n)k′(o)l′(p)

}
gradually converges to R.

For the converse, suppose {xjkl} is an Sθ3-Cauchy triple sequence. So for
any ξ ∈ (0, 1], ε > 0 and z ∈ X,∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−R,z∥

G
(ξ) ≥ ε

}∣∣∣
≤

∣∣∣{(j, k, l) ∈ Inop : A∥xjkl−xj′(n)k′(o)l′(p),z∥G

(ξ) ≥ ε/2
}∣∣∣

+
∣∣∣{(j, k, l) ∈ Inop : A∥xj′(n)k′(o)l′(p)−R,z∥

G

(ξ) ≥ ε/2
}∣∣∣

which as a consequence implies that xjkl → R {Sθ3 (G2)} .

4. Conclusion

The aim of this paper is to investigate the notion of convergence of gradual
lacunary statistical convergent sequences of ternary sequences in 2- normed
linear spaces (G2-NLS). Furthermore, some algebraic and topological properties
of this set of ternary sequences are obtained with the notion of gradual. The
theorems are proved in the light of the G2-NLS theory approach. Important
findings have been obtained that reveal various basic features of this concept.
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[31] S. Pehlivan, M. Gürdal, and B. Fisher, Lacunary statistical cluster points of sequences,

Math. Commun. 11 (2006), 39–46.
[32] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53

(1900), 289–321.

[33] I. Sadeqi and F. Y. Azari, Gradual normed linear space, Iran. J. Fuzzy Syst. 8 (2011),
no. 5, 131–139.
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