DOI QR코드

DOI QR Code

Prediction of Venous Trans-Stenotic Pressure Gradient Using Shape Features Derived From Magnetic Resonance Venography in Idiopathic Intracranial Hypertension Patients

  • Chao Ma (School of Clinical Medicine, Tsinghua University) ;
  • Haoyu Zhu (Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University) ;
  • Shikai Liang (School of Clinical Medicine, Tsinghua University) ;
  • Yuzhou Chang (Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University) ;
  • Dapeng Mo (Department of Neurology, Beijing Tiantan Hospital, Capital Medical University) ;
  • Chuhan Jiang (Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University) ;
  • Yupeng Zhang (Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University)
  • 투고 : 2023.09.26
  • 심사 : 2023.11.03
  • 발행 : 2024.01.01

초록

Objective: Idiopathic intracranial hypertension (IIH) is a condition of unknown etiology associated with venous sinus stenosis. This study aimed to develop a magnetic resonance venography (MRV)-based radiomics model for predicting a high trans-stenotic pressure gradient (TPG) in IIH patients diagnosed with venous sinus stenosis. Materials and Methods: This retrospective study included 105 IIH patients (median age [interquartile range], 35 years [27-42 years]; female:male, 82:23) who underwent MRV and catheter venography complemented by venous manometry. Contrast enhanced-MRV was conducted under 1.5 Tesla system, and the images were reconstructed using a standard algorithm. Shape features were derived from MRV images via the PyRadiomics package and selected by utilizing the least absolute shrinkage and selection operator (LASSO) method. A radiomics score for predicting high TPG (≥ 8 mmHg) in IIH patients was formulated using multivariable logistic regression; its discrimination performance was assessed using the area under the receiver operating characteristic curve (AUROC). A nomogram was constructed by incorporating the radiomics scores and clinical features. Results: Data from 105 patients were randomly divided into two distinct datasets for model training (n = 73; 50 and 23 with and without high TPG, respectively) and testing (n = 32; 22 and 10 with and without high TPG, respectively). Three informative shape features were identified in the training datasets: least axis length, sphericity, and maximum three-dimensional diameter. The radiomics score for predicting high TPG in IIH patients demonstrated an AUROC of 0.906 (95% confidence interval, 0.836-0.976) in the training dataset and 0.877 (95% confidence interval, 0.755-0.999) in the test dataset. The nomogram showed good calibration. Conclusion: Our study presents the feasibility of a novel model for predicting high TPG in IIH patients using radiomics analysis of noninvasive MRV-based shape features. This information may aid clinicians in identifying patients who may benefit from stenting.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (NSFC) Youth Project (grant number 82301457).

참고문헌

  1. Fields JD, Javedani PP, Falardeau J, Nesbit GM, Dogan A, Helseth EK, et al. Dural venous sinus angioplasty and stenting for the treatment of idiopathic intracranial hypertension. J Neurointerv Surg 2013;5:62-68 
  2. Wall M, Kupersmith MJ, Kieburtz KD, Corbett JJ, Feldon SE, Friedman DI, et al. The idiopathic intracranial hypertension treatment trial: clinical profile at baseline. JAMA Neurol 2014;71:693-701 
  3. Farb RI, Vanek I, Scott JN, Mikulis DJ, Willinsky RA, Tomlinson G, et al. Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis. Neurology 2003;60:1418-1424 
  4. De Simone R, Ranieri A, Bonavita V. Advancement in idiopathic intracranial hypertension pathogenesis: focus on sinus venous stenosis. Neurol Sci 2010;31 Suppl 1:S33-S39 
  5. Fargen KM. Idiopathic intracranial hypertension is not idiopathic: proposal for a new nomenclature and patient classification. J Neurointerv Surg 2020;12:110-114 
  6. Fargen KM, Liu K, Garner RM, Greeneway GP, Wolfe SQ, Crowley RW. Recommendations for the selection and treatment of patients with idiopathic intracranial hypertension for venous sinus stenting. J Neurointerv Surg 2018;10:1203-1208 
  7. Ding H, Zhao P, Lv H, Li X, Qiu X, Dai C, et al. A new method for assessing transverse sinus stenosis with CT venography based on the venous trans-stenotic pressure gradient. J Neurointerv Surg 2023;15:1034-1038 
  8. Shazly TA, Jadhav AP, Aghaebrahim A, Ducruet AF, Jankowitz BT, Jovin TG, et al. Venous sinus stenting shortens the duration of medical therapy for increased intracranial pressure secondary to venous sinus stenosis. J Neurointerv Surg 2018;10:310-314 
  9. Pellerin A, Aguilar Garcia J, David A, Meyer J, Guyomarch Delasalle B, De Gaalon S, et al. A quantitative and semiautomatic measurement of transverse sinus stenosis improves idiopathic intracranial hypertension diagnostic accuracy. J Neuroradiol 2018;45:329-332 
  10. Zhang Y, Ma C, Li C, Li X, Liu R, Liu M, et al. Prediction of the trans-stenotic pressure gradient with arteriography-derived hemodynamic features in patients with idiopathic intracranial hypertension. J Cereb Blood Flow Metab 2022;42:1524-1533 
  11. Lin L, Lin JH, Guan J, Zhang XL, Chu JP, Yang ZY. Falcine sinus: incidence and imaging characteristics of three-dimensional contrast-enhanced thin-section magnetic resonance imaging. Korean J Radiol 2018;19:463-469 
  12. Raynald, Huo X, Yang H, Wang Z, Tong X, Li X, et al. Characteristics and outcomes of the idiopathic intracranial hypertension treatment in intrinsic and extrinsic stenosis: a single-center experience in China. Neurol Ther 2021;10:1029-1044 
  13. Bussiere M, Falero R, Nicolle D, Proulx A, Patel V, Pelz D. Unilateral transverse sinus stenting of patients with idiopathic intracranial hypertension. AJNR Am J Neuroradiol 2010;31:645-650 
  14. West JL, Greeneway GP, Garner RM, Aschenbrenner CA, Singh J, Wolfe SQ, et al. Correlation between angiographic stenosis and physiologic venous sinus outflow obstruction in idiopathic intracranial hypertension. J Neurointerv Surg 2019;11:90-94 
  15. Zhao P, Ding H, Lv H, Li X, Qiu X, Zeng R, et al. CT venography correlate of transverse sinus stenosis and venous transstenotic pressure gradient in unilateral pulsatile tinnitus patients with sigmoid sinus wall anomalies. Eur Radiol 2021;31:2896-2902 
  16. Carvalho GB, Matas SL, Idagawa MH, Tibana LA, de Carvalho RS, Silva ML, et al. A new index for the assessment of transverse sinus stenosis for diagnosing idiopathic intracranial hypertension. J Neurointerv Surg 2017;9:173-177 
  17. Higgins JN, Gillard JH, Owler BK, Harkness K, Pickard JD. MR venography in idiopathic intracranial hypertension: unappreciated and misunderstood. J Neurol Neurosurg Psychiatry 2004;75:621-625 
  18. Jang J, Kim BS, Sung J, Kim BY, Choi HS, Jung SL, et al. Subtraction MR venography acquired from time-resolved contrast-enhanced MR angiography: comparison with phase-contrast MR venography and single-phase contrast-enhanced MR venography. Korean J Radiol 2015;16:1353-1363 
  19. Ding H, Zhao P, Lv H, Li X, Qiu X, Zeng R, et al. Correlation between trans-stenotic blood flow velocity differences and the cerebral venous pressure gradient in transverse sinus stenosis: a prospective 4-dimensional flow magnetic resonance imaging study. Neurosurgery 2021;89:549-556 
  20. Ou C, Chong W, Duan CZ, Zhang X, Morgan M, Qian Y. A preliminary investigation of radiomics differences between ruptured and unruptured intracranial aneurysms. Eur Radiol 2021;31:2716-2725 
  21. Liu Q, Jiang P, Jiang Y, Ge H, Li S, Jin H, et al. Prediction of aneurysm stability using a machine learning model based on Pyradiomics-derived morphological features. Stroke 2019;50:2314-2321 
  22. Dinkin M, Oliveira C. Men are from mars, idiopathic intracranial hypertension is from venous: the role of venous sinus stenosis and stenting in idiopathic intracranial hypertension. Semin Neurol 2019;39:692-703 
  23. Eisenman DJ, Raghavan P, Hertzano R, Morales R. Evaluation and treatment of pulsatile tinnitus associated with sigmoid sinus wall anomalies. Laryngoscope 2018;128 Suppl 2:S1-S13 
  24. Saposnik G, Barinagarrementeria F, Brown RD Jr, Bushnell CD, Cucchiara B, Cushman M, et al. Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011;42:1158-1192 
  25. Sun SS, Liu FY, Tsai JJ, Yen RF, Kao CH, Huang WS. Using 99mTc HMPAO brain SPECT to evaluate the effects of anticoagulant therapy on regional cerebral blood flow in primary antiphospholipid antibody syndrome patients with brain involvement-a preliminary report. Rheumatol Int 2003;23:301-304 
  26. Schirmer CM, Bulsara KR, Al-Mufti F, Haranhalli N, Thibault L, Hetts SW, et al. Antiplatelets and antithrombotics in neurointerventional procedures: guideline update. J Neurointerv Surg 2023;15:1155-1162 
  27. Bateman GA. Vascular hydraulics associated with idiopathic and secondary intracranial hypertension. AJNR Am J Neuroradiol 2002;23:1180-1186