DOI QR코드

DOI QR Code

중심 주파수 200 kHz의 과학어군탐지기를 활용한 전갱이의 광대역 주파수 특성

Ex situ combined in situ target strength of Japanese horse mackerel using a broadband echosounder

  • 강명희 (경상국립대학교 해양경찰시스템학과/해양산업연구소) ;
  • 김한수 (한국해양과학기술원 해양영토.방위연구부) ;
  • 강동하 (경상국립대학교 대학원 해양경찰시스템학과) ;
  • 정지훈 (경상국립대학교 대학원 해양경찰시스템학과) ;
  • Fredrich Simanungkalit (경상국립대학교 대학원 해양경찰시스템학과) ;
  • 강돈혁 (한국해양과학기술원 해양영토.방위연구부)
  • Myounghee KANG (Department of Maritime Police and Production System/Institute of Marine Industry, Gyeongsang National University) ;
  • Hansoo KIM (Marine Domain and Security Research Department, Korea Institute of Ocean Science & Technology) ;
  • Dongha KANG (Department of Maritime Police and Production System, Graduate School, Gyeongsang National University) ;
  • Jihoon JUNG (Department of Maritime Police and Production System, Graduate School, Gyeongsang National University) ;
  • Fredrich SIMANUNGKALIT (Department of Maritime Police and Production System, Graduate School, Gyeongsang National University) ;
  • Donhyug KANG (Marine Domain and Security Research Department, Korea Institute of Ocean Science & Technology)
  • 투고 : 2024.05.02
  • 심사 : 2024.05.29
  • 발행 : 2024.05.31

초록

Recently, domestic fishing production of Japanese horse mackerel has been continuously decreasing. To achieve sustainable fishing of this species, it is essential to acquire its target strength (TS) for accurate biomass estimation and to study its ecological characteristics. To date, there has been no TS research using a broadband echosounder targeting Japanese horse mackerel. In this study, for the first time, we synchronized an underwater camera with a broadband frequency (nominal center frequency of 200 kHz, range: 160-260 kHz) to measure the TS according to the body size (16.8-35.5 cm) and swimming angle of the species. The relationship between Japanese horse mackerel length and body weight showed a general tendency for body weight to increase as length increased. The pattern of the frequency spectra (average values) by body length exhibited a similar trend regardless of body length, with no significant fluctuations in frequency observed. The lowest TS value was observed at 243 kHz while the highest TS values were recorded at 180 and 257.5 kHz. The frequency spectra for the swimming angles appeared to be flat at angles of -5, 0, 30, 60, 75, and 80° while detecting more general trends of frequency spectra for swimming angle proved challenging. The results of this study can serve as fundamental data for Japanese horse mackerel biomass estimation and ecological research.

키워드

과제정보

본 연구는 2024년 정부(방위사업청)의 재원으로 국방기술진흥연구소(KRIT)의 지원을 받아 수행된 연구임(KRIT-CT-22-056, 과제명: 해양생물음 측정 및 특성 분석 연구). 또한, 이 논문은 2022년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20230005).

참고문헌

  1. Andersen LN, Chu D, Heimvoll H, Korneliussen R, Macaulay GJ and Ona E. 2021. Quantitative processing of broadband data as implemented in a scientific split beam echosounder. arXiv preprint. https://doi.org/10.48550/arXiv.2104.07248.
  2. Benoit-Bird KJ and Waluk CM. 2020. Exploring the promise of broadband fisheries echosounders for species discrimination with quantitative assessment of data processing effects. J Acoust Soc Am 147, 411-427. https://doi.org/10.1121/10.0000594.
  3. Bertrand A, Josse E and Masse J. 1999. In situ acoustic target-strength measurement of bigeye (Thunnus obesus) and yellowfin tuna (Thunnus albacares) by coupling split-beam echosounder observations and sonic tracking, ICES J Mar Sci 60, 51-60. https://doi.org/10.1006/jmsc.1998.0430.
  4. Cha HK, Lee JB, Kang SK, Chang DS and Choi JH. 2009. Reproduction of the jack mackerel, Trachurus japonicus Temminck et Schlegel in the coastal waters around Jeju Island, Korea: Maturation and spawning. Bull Korean Soc Fish Tech 45, 243-250. https://doi.org/10.3796/KSFT.2009.45.4.243.
  5. Choi JH, Oh WS, Yoon EA, Im YJ and Lee KH. 2018. Target Strength According to Tilt Angle and Length of Black Seabream Acanthopagrus schlegeli at 200 kHz-frequency. Korean J Fish Aquat Sci 51, 566-570. https://doi.org/10.5657/KFAS.2018.0566.
  6. Demer DA, Andersen LN, Bassett C, Berger L, Chu D, Condiotty J and Cutter GR. 2017. Evaluation of a wideband echosounder for fisheries and marine ecosystem science. ICES Coop Res Rep 336, 1-79.
  7. Dunning J, Jansen T, Fenwick AJ and Fernandes PG. 2023. A new in-situ method to estimate fish target strength reveals high variability in broadband measurements. Fish Res 261, 106611. https://doi.org/10.1016/j.fishres.2023.106611.
  8. Fira. 2024. Website on total allowable catch. Retrieved from https://www.fira.or.kr/fira/fira_030601.jsp on Mar 7.
  9. Foote KG, Knudsen HP, Vestnes G, MacLennan DN and Simmonds EJ. 1987. Calibration of acoustic instruments for fish density estimation: A practical guide. ICES CRR 144, 2707-7144. https://doi.org/10.17895/ices.pub.8265.
  10. Gauthier S and Rose GA. 2001. Target Strength of encaged Atlantic redfish (Sebastes spp.). ICES J Mar Sci 58, 562-568. https://doi.org/10.1006/jmsc.2001.1066.
  11. Hazen EL and Horne JK. 2004. Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma. ICES J Mar Sci 61, 363-377. https://doi.org/10.1016/j.icesjms.2004.01.005.
  12. Horne JK. 2003. The influence of ontogeny, physiology, and behaviour on the target strength of walleye pollock (Theragra chalcogramma). ICES J Mar Sci 60, 1063-1074. https://doi.org/10.1121/10.0000594.
  13. Huh SH and Cha BY. 1998. Feeding habits of jack mackerel, Trachurus japonicus, collected from the Nakdong river estuary. Bull Korean Soc Fish Tech 34, 320-327.
  14. Hwang BK, Shin HO, Cho SH, Lee DJ and Kang DH. 2008. Acoustic target strength measurements on immobile riverine shrimp, oriental river prawn (Macrobrachium koreana), in freshwater. J Kor Soc Fish Tech 44, 37-45. https://doi.org/10.3796/KSFT.2008.44.1.037.
  15. Hwang KS, Lee JH, Park JH, Cha HK, Choi JH, Lee HB, Park JS and Kang MH. 2016. First trial of the state of the art acoustic systems mounted on the R/V Tamgu 21. Kor J Fish Aqua Sci 49, 509-515. https://doi.org/10.5657/KFAS.2016.0509.
  16. Hwang KS, Yoon EA, Lee KH, Lee HB and Hwang DJ. 2015. Multifrequency acoustic scattering characteristics of jack mackerel by KRM model. J Kor Soc Fish Technol 51, 424-431. https://doi.org/10.3796/KSFT.2015.51.3.424.
  17. Jech JM and Horne JK. 2002. Three-dimensional visualization of fish morphometry and acoustic backscatter. J Acoust Soc Am 3, 35-40. https://doi.org/10.1121/1.1430676.
  18. Kang DH, Hwang DJ, Tohru M, Kohji I and Lee KH. 2004. Acoustic Target Strength of Live Japanese Common Squid (Todarodes pacifica) for Applying Biomass Estimation. J Kor Fish Soc 37, 345-353. https://doi.org/10.5657/kfas.2004.37.4.345.
  19. Kang DH, Hwnag DJ, Na JY and Kim SA. 2001. Study on the Backscattered Signal of Swimbladdred Fish: Target Strength due to Length and Behavior of Red Seabream (Pagrus Major). J Acoust Soc Kr 20, 100-109.
  20. Kang DH, Kim JH and Lim SH. 2010. Acoustic Target Strength Characteristics of Two Species of Multiple Jellyfishes, Aurelia aurita and Cyanea nozakii, in the Southern Coast of Korea. Ocean Polar Res 32, 113-122. https://doi.org/10.4217/OPR.2010.32.2.113.
  21. Kawauchi Y, Minami K, Shirakawa H, Miyashita K, Iwahara Y, Tomiyasu M, Kobayashi M, Sakai T, Shao H and Nakagawa M. 2019. Target strength measurement of free-swimming jack mackarel using an indoor large experimental tank. Nippon Suisan Gakkaishi 85, 2-16. https://doi.org/10.2331/suisan.18-00008.
  22. Kim HY, Lim YN, Jeong JM, Kim HJ and Baeck GW. 2015. Diet composition of juvenile Trachurus japonicus in the coastal waters of Geumodo Yeosu, Korea. J Korean Soc Fish Technol 51, 637-643. https://doi.org/10.3796/KSFT.2015.51.4.637.
  23. Lavery AC, Bassett C, Lawson GL and Jech JM. 2017. Exploiting signal processing approaches for broadband echosounders. ICES J Mar Sci 74, 2262-2275. https://doi.org/10.1093/icesjms/fsx155.
  24. Lee DJ. 2005. Fish length dependence of acoustic target strength for 12 dominant fish species caught in the Korean waters at 75 kHz. J Kor Soc Fish Tech 41, 296-305. https://doi.org/10.3796/KSFT.2005.41.4.296.
  25. Lee HB and Kang DH. 2010. In situ side-aspect target strength of Japanese anchovy (Engraulis japonicus) in northwestern Pacific Ocean. J Kor Soc Fish Tech, 46, 248-256. https://doi.org/10.3796/KSFT.2010.46.3.248.
  26. Nakamura T, Hamano A, Abe K, Yasuma H and Miyashita K. 2013. Acoustic scattering properties of juvenile jack mackerel Trachurus japonicus based on a scattering model and ex situ target strength measurements. Nippon Suisan Gakkaishi 79, 345-354. https://doi.org/10.2331/suisan.79.345.
  27. NFRDI (National Fisheries Research and Development Institute). 2024. Website on Biodiversity information. Retrieved from https://www.nifs.go.kr/frcenter/sub/sub_view.html?taxonId=59186 on Mar 7.
  28. O'Driscoll RL and Rose GA. 2001. In situ acoustic target strength of juvenile capelin. ICES J Mar Sci 58, 342-345. https://doi.org/10.1006/jmsc.2000.1015.
  29. Park MS, Yoon EA, Hwang KS, Lee DI, Oh WS and Lee KH. 2017. Variation of target strength by swimming orientation and size for Pacific herring (Clupea pallasii) at the frequency of 70-kHz. J Korean Soc Fish Tech 53, 396-403. https://doi.org/10.3796/KSFT.2017.53.4.396.
  30. Sawada K, Takahashi H, Abe K, Ichii T, Watanabe K and Takao Y. 2009. Target-strength, length, and tilt-angle measurements of Pacific saury (Cololabis saira) and Japanese anchovy (Engraulis japonicus) using an acousticoptical system. ICES J Mar Sci 66, 1212-1218. https://doi.org/10.1093/icesjms/fsp079.
  31. Scoulding B, Chu D, Ona E and Fernandes PG. 2015. Target strengths of two abundant mesopelagic fish species. The J Acoust Soc Ame 137, 989-1000. https://doi.org/10.1121/1.4906177.
  32. Simmonds J and MacLennan DN. 2005. Fisheries Acoustics: theory and practice, 2nd Edn. Oxford: Blackwell Science 437.
  33. Stanton TK and Chu D. 2008. Calibration of broadband active acoustic system using a single standard spherical target. J Acoust Soc Am 124, 128-136. https://doi.org/10.1121/1.2917387.
  34. Statistics Korea. 2024. Fishery production survey. Retrieved from https://kostat.go.kr/ansk/ on Feb 8.
  35. Tong J, Xue M, Zhu Z, Wang W and Tian S. 2022. Impacts of Morphological Characteristics on Target Strength of Chub Mackerel (Scomber japonicus) in the Northwest Pacific Ocean. Front Mar Sci 9, 2296-7745. https://doi.org/10.3389/fmars.2022.856483.
  36. Yamanaka Y, Fujieda S, Nagano T, Kaparang FE and Matsuno Y. 1999. Measurement of Directivity Pattern of Target Strength of Japanese Horse Mackerel by Split-beam Echo Sounder. Nippon Suisan Gakkaishi 65, 414-418. https://doi.org/10.2331/suisan.65.414.
  37. Yan N, Mukai T, Hasegawa K, Yamamoto J and Fukuda Y. 2024. Broadband target strength of arabesque greenling, Pacific sand lance, and pointhead flounder. ICES J Mar Sci 81, 195-203. https://doi.org/10.1093/icesjms/fsad195.
  38. Zhang H, Li J, Wang C, Wang C, Wu J, Du H, Wei Q and Kang M. 2018. Acoustic Target Strength of the Endangered Chinese Sturgeon (Acipenser sinensis) by Ex Situ Measurements and Theoretical Calculations. Appl Sci 8, 2554. https://doi.org/10.3390/app8122554.