DOI QR코드

DOI QR Code

어류군집 조사 결과 비교를 통한 최적의 방법 선택

Optimal selection of fish assemblage survey method through comparing the result

  • 김재영 ((주)네오엔비즈 환경안전연구소) ;
  • 엄상민 ((주)네오엔비즈 환경안전연구소) ;
  • 김병모 ((주)네오엔비즈 환경안전연구소) ;
  • 최태섭 ((주)네오엔비즈 환경안전연구소)
  • Jae-Young KIM (Institute of Environmental Protection, Neoenbiz Co.) ;
  • Sang-Min EOM (Institute of Environmental Protection, Neoenbiz Co.) ;
  • Byeong-Mo GIM (Institute of Environmental Protection, Neoenbiz Co.) ;
  • Tae Seob CHOI (Institute of Environmental Protection, Neoenbiz Co.)
  • 투고 : 2023.12.05
  • 심사 : 2024.04.25
  • 발행 : 2024.05.31

초록

Fish resource surveys were conducted near Jeju Island in June, August and October 2021 using an underwater camera monitoring system, fish pots, and SCUBA diving methods. The efficiency of the methods used to survey fish resources was compared using the number of individuals compared to area per unit time (inds/m3/h) and the number of species compared to area per unit time (spp./m3/h). As a result of comparing the number of individuals compared to the area per unit time (inds/m3/h), the order was underwater camera 214.69, SCUBA diving 124.62, and fish pots 0.57 inds/m3/h. The number of species compared to area per unit time (spp./m3/h) is in the following order: SCUBA diving 0.85, underwater camera 0.38, and fish pots 0.01 spp./m3/h. The fish resource monitoring method using underwater cameras was found to be more efficient in individual counts, and the SCUBA diving method was found to be more efficient in species counts. When considering cost and survey efficiency, the fish resource survey method using underwater cameras was judged to be more effective. The results of this study are expected to be widely used in estimating the population density of fish, which is the core of future fisheries resource surveys.

키워드

과제정보

이 논문은 2020년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20203030020080, 해상풍력 단지 해양공간 환경 영향 분석 및 데이터베이스 구축).

참고문헌

  1. Andaloro F, Ferraro M, Mostarda E, Romeo T and Consoli P. 2013. Assessing the suitability of a remotely operated vehicle (ROV) to study the fish community associated with offshore gas platforms in the Ionian Sea: a comparative analysis with underwater visual censuses (UVCs). Helgol Mar Res 67, 241-250. https://doi.org/10.1007/s10152-012-0319-y. 
  2. An HC, Bae JH, Park JM, Hong SE and Kim SH. 2014. Bycatch and discards of the whelk trap in the Uljin waters, East Sea. J Kor Soc Fish Technol 50, 520-529. http://dx.doi.org/10.3796/KSFT.2014.50.4.520. 
  3. Bernard ATF, Gotz A, Kerwath SE and Wilke CG. 2013. Observer bias and detection probability in underwater visual census of fish assemblages measured with independent double-observers. J Exp Mar Biol Ecol 443, 75-84. https://doi.org/10.1016/j.jembe.2013.02.039. 
  4. Bohnsack JA and Bannerot SP. 1986. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. NOAA Technical Report NMFS 41, 1-15. 
  5. Boulinier T, Nichols JD, Sauer JR, Hines JE and Pollock KH. 1998. Estimating species richness: the importance of heterogeneity in species detectability. Ecology 79, 1018-1028. https://doi.org/10.2307/176597. 
  6. Brock RE. 1982. A critique of the visual census method for assessing coral reef fish population. Bull Mar Sci 32, 269-276. 
  7. Cha BY. 2010. Species composition and abundance of fish in the water off Geomun Island of the Southern Sea, Korea. Korean J Ichthyol 22, 168-178. 
  8. Chabanet P, Dufour V and Galzin R. 1995. Disturbance impact on reef fish communities in Reunion Island (Indian Ocean). J Exp Mar Biol Ecol 188, 29-48. https://doi.org/10.1016/0022-0981(94)00184-F. 
  9. Choi KS, Jo HS amd Kang MH. 2023. Investigation on bycatch reduction methods of marine mammals for fishing with gill net, trap, trawl, stow net and set net. J Korean Soc Fish Ocean Technol 59, 279-289. https://doi.org/10.3796/KSFOT.2023.59.4.279. 
  10. DeMartini EE, Friedlander AM, Sandin SA and Sala E. 2008. Differences in fish-assemblage structure between fished and unfished atolls in the northern Line Islands, central Pacific. Mar Ecol Prog Ser 365, 199-215. https://doi.org/10.3354/meps07501. 
  11. Garner SB, Olsen AM, Caillouet R, Campbell MD, and Patterson WF. 2021. Estimating reef fish size distributions with a mini remotely operated vehicle-integrated stereo camera system. Plos One 16, e0247985. https://doi.org/10.1371/journal.pone.0247985. 
  12. Goetze JS, Jupiter SD, Langlois TJ, Wilson SK, Harvey ES, Bond T and Naisilisili W. 2015. Diver operated video most accurately detects the impacts of fishing within periodically harvested closures. J Exp Mar Biol Ecol 462, 74-82. https://doi.org/10.1016/j.jembe.2014.10.004. 
  13. Hajisamae S and Chou LM. 2003. Do shallow water habitats of an impacted coastal strait serve as nursery grounds for fish?. Estuar Coast Shelf Sci 56, 281-290. https://doi.org/10.1016/S0272-7714(02)00162-2. 
  14. Hamilton SL, Caselle JE, Malone DP and Carr MH. 2010. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. Proc Natl Acad Sci U.S.A. 107, 18272-18277. https://doi.org/10.1073/pnas.0908091107. 
  15. Hong SY. 2006. Marine invertebrates in Korean Coasts. Academy Publishing Company Inc., Seoul, Korea, 1-479. 
  16. Jeong SB, Lee JH, Kim HS, Oh TY and Choi SG. 2002. Analysis of stomach contents of sea-eel conger myriaster caught from lost plastic pot. Bull Korean Soc Fish Tech 38, 149-155. 
  17. Kim IS, Choi Y, Lee CL, Lee YJ, Kim BJ and Kim JH. 2005. Illustrated book of Korean fishes. Kyo-Hak Publishing Company Ltd., Seoul, Korea, 1-615. 
  18. Kim MJ, Han SH, Kim JS, Kim BY and Song CB. 2014. Species composition and bimonthly changes of fish community in the coastal waters of Sagyeoi, Jeju Island. Korean J Ichthyol 26, 212-221. 
  19. Ko JC, Han SH, Kim BY, Choi JH and Hwang KS. 2021. A seasonal characteristic of fish assemblage in the coastal waters Gapa-do, southern part of Jeju Island. J Korean Soc Fish Ocean Technol 57, 10-24. https://doi.org/10.3796/ksfot.2021.57.1.010. 
  20. Koh JP, Go YB, Lee SJ and Kim SG. 2004. Species composition and behavioral characteristics of fishes observed around underwater cage system for the abalone, Haliotis discus in coastal waters of Jeju Island. Korean J Ichthyol 16, 155-164. 
  21. Kwak SN and SH Huh. 2007. Temporal variation in species com position and abundance of fish assemblages in Masan Bay. Korean J Ichthyol 19, 132-141. 
  22. Lee GM, Lee YD, Park JY and Gwak WS. 2018. Species composition and seasonal variation of fish by SCUBA observation in the coastal water off Tongyeong, Korea. Korean J Ichthyol 30, 107-113. https://doi.org/10.35399/ISK.30.2.6. 
  23. Lee SJ, Ko JC, Yoo JT, Im YJ, Kim BY, and Kim JI. 2009. Species composition and seasonal variation of fish assemblage of the western coastal waters of Jeju Island, Korea. Korean J Ichthyol 21, 167-176. 
  24. MacNeil MA, Graham NAJ, Conroy MJ, Fonnesbeck CJ, Polunin NVC, Rushton SP, Chabanet P and McClanahan TR. 2008a. Detection heterogeneity in underwater visual census data. Journal of Fish Biology 73, 1748-1763. https://doi.org/10.1111/j.1095-8649.2008.02067.x. 
  25. MacNeil MA, Tyler EHM, Fonnesbeck CJ, Rushton SP, Polunin NVC and Conroy MJ. 2008b. Accounting for detectability in reef-fish biodiversity estimates. Mar Ecol Prog Ser 367, 249-260. https://doi.org/10.3354/meps07580. 
  26. Mallet D and Pelletier D. 2014. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952-2012). Fisheries Research 154. 44-62. https://doi.org/10.1016/j.fishres.2014.01.019. 
  27. McIntyre FD, Neat F, Collie N, Stewart M and Fernandes PG. 2015. Visual surveys can reveal rather different "pictures" of fish densities: Comparison of trawl and video camera surveys in the Rockall Bank, NE Atlantic Ocean. Deep Sea Res I 95, 67-74. https://doi.org/10.1016/j.dsr.2014.09.005. 
  28. Min DK, Lee JS, Koh DB and Je JK. 2004. Mollusks in Korea. Hanguel Graphics. Busan, Korea, 1-566. 
  29. Nakabo T. 2002. Fishes of Japan with pictorial keys to the species, english edition, Tokai Univ Press, Tokyo, 1-1749. 
  30. National Research Council. 2000. Improving the Collection, Management, and Use of Marine Fisheries Data. National Academy Press. National Academy Press, Washington, D.C., 1-236. https://doi.org/10.17226/9969. 
  31. Nelson JS. 2006. Fishes of the world. 4th ed. John Wiley and Sons, Inc., New Jersey, 1-601. 
  32. Oh HT, Yeo MY, Jung HE and Shim JM. 2020. Status and improvement of environmental impacts assessment on the marine endangered species around the coastal area of offshore wind energy - Case study of the marine mammals and sea birds - (in Korean). J Fish Marine Sci Educ 32, 1428-1444. https://doi.org/10.13000/JFMSE.2020.12.32.6.1428. 
  33. Park M, Park S, Seong B, Choi Y and Jung SP. 2021. Current status and prospective of offshore wind power to achieve Korean renewable energy 3020 plan (in Korean). J Korean Soc Environ Eng 43, 196-205. https://doi.org/10.4491/KSEE.2021.43.3.196. 
  34. Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N and Sala E. 2008. Baselines and degradation of coral reefs in the Northern Line Islands. Ahmed N, editor, PLOS ONE 3, e1548. https://doi.org/10.1371/journal.pone.0001548. 
  35. Schobernd ZH, Bachele, NM and Conn PB. 2013. Examining the utility of alternative video monitoring metrics for indexing reef fish abundance. Can J Fish Aquat Sci 71, 464-471. https://doi.org/10.1139/cjfas-2013-0086. 
  36. Sheaves M, Bradley M, Herrera C, Mattone C, Lennard C, Sheaves J and Konovalov DA. 2020. Optimizing video sampling for juvenile fish surveys: Using deep learning and evaluation of assumptions to produce critical fisheries parameters. Fish and Fish 21, 1259-1276. https://doi.org/10.1111/faf.12501. 
  37. Song MY, Kim JI, Kim ST, Lee JH and Lee JB. 2012. Seasonal variation in species composition of catch by a coastal beam trawl in Jinhae Bay and Jinju Bay. J Korean Soc of Fisheries Technol 48, 428-444. https://doi.org/10.3796/KSFT.2012.48.4.428. 
  38. Sward D, Monk J and Barrett N. 2019. A systematic review of remotely operated vehicle surveys for visually assessing fish assemblages. Front Mar Sci 6, 134. https://doi.org/10.3389/fmars.2019.00134. 
  39. Walsh S, Engas A, Ferro R, Fonteyne R and Marlen B. 2002. To catch or conserve more fish: the evolution of fishing technology in fisheries science. ICES Mar Sci Symp 215, 493-503. https://doi.org/10.17895/ices.pub.8887. 
  40. Williams K, Rooper CN and Towler R. 2010. Use of stereo camera systems for assessment of rockfish abundance in untrawlable areas and for recording pollock behavior during midwater trawls. Fishery Bulletin 108, 352-362. 
  41. Yoon YG. 2023. Measurement and monitoring of underwater noise generated by operational offshore wind turbine in Southwest offshore wind farm. Doctoral dissertation, Hanyang university, Korea, 1-103. 
  42. Zgliczynski BJ, Williams ID, Schroeder RE, Nadon MO, Richards BL, Sandin SA. 2013. The IUCN Red List of Threatened Species: an assessment of coral reef fishes in the US Pacific Islands. Coral Reefs 32, 637-650. https://doi.org/10.1007/s00338-013-1018-0.