DOI QR코드

DOI QR Code

Research on Drivable Road Area Recognition and Real-Time Tracking Techniques Based on YOLOv8 Algorithm

YOLOv8 알고리즘 기반의 주행 가능한 도로 영역 인식과 실시간 추적 기법에 관한 연구

  • Jung-Hee Seo (Dept. of Computer Engineering, Tongmyong University)
  • 서정희 (동명대학교 컴퓨터공학과)
  • Received : 2024.04.12
  • Accepted : 2024.06.12
  • Published : 2024.06.30

Abstract

This paper proposes a method to recognize and track drivable lane areas to assist the driver. The main topic is designing a deep-based network that predicts drivable road areas using computer vision and deep learning technology based on images acquired in real time through a camera installed in the center of the windshield inside the vehicle. This study aims to develop a new model trained with data directly obtained from cameras using the YOLO algorithm. It is expected to play a role in assisting the driver's driving by visualizing the exact location of the vehicle on the actual road consistent with the actual image and displaying and tracking the drivable lane area. As a result of the experiment, it was possible to track the drivable road area in most cases, but in bad weather such as heavy rain at night, there were cases where lanes were not accurately recognized, so improvement in model performance is needed to solve this problem.

본 논문은 운전자의 운행 보조 역할로 주행 가능한 차선 영역을 인식하고 추적하는 방법을 제안한다. 주요 주제는 차량 내부의 앞 유리 중앙에 설치된 카메라를 통해 실시간으로 획득한 영상을 기반으로 컴퓨터 비전과 딥 러닝 기술을 활용하여 주행 가능한 도로 영역을 예측하는 심층 기반 네트워크를 설계한다. 본 연구는 YOLOv8 알고리즘을 이용하여 카메라에서 직접 획득한 데이터로 훈련한 새로운 모델을 개발하는 것을 목표한다. 실제 도로에서 자신의 차량의 정확한 위치를 실제 영상과 일치하게 시각화하여 주행 가능한 차선 영역을 표시 및 추적함으로써 운전자 운행의 보조하는 역할을 기대한다. 실험 결과, 대부분 주행 가능한 도로 영역의 추적이 가능했으나 밤에 비가 심하게 오는 경우와 같은 악천후에서 차선이 정확하게 인식되지 않는 경우가 발생하여 이를 해결하기 위한 모델의 성능 개선이 필요하다.

Keywords

References

  1. Y. Kortli, S. Gabsi, L. F. C. L. Y. Voon, M. Jridi, M. Merzougui, and M Atri, "Deep embedded hybrid CNN-LSTM network for lane detection on NVIDIA Jetson Xavier NX," Knowledge-Based Systems, vol. 240, 2022, pp. 1-17. 
  2. H. Komori and K. Onoguchi, "Driving Lane Detection based on Recognition of Road Boundary Situation," 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, ACT, Australia, Dec. 2018, pp. 1-8. 
  3. A. A. Mamun, P. P. Em, M. J. Hossen, B. Jahan, and A. Tahabilder, "A deep learning approach for lane marking detection applying encode-decode instant segmentation network," Heliyon, vol. 9, no. 3, Mar. 2023, pp. 1-19. 
  4. I. Ramadani A., Eko M. Yuniarno, and R. F. Rachmadi, "Lane Departure Warning based on Road Marking Detection using Mask Region-based Convolutional Neural Networks," 2022 International Conference on Electrical Engineering, Computer and Information Technology, Jember, Indonesia, Nov. 2022, pp. 60-64. 
  5. Y.-C. Chan, Y.-C. Lin, and P.-C. Chen, "Lane Mark and Drivable Area Detection Using a Novel Instance Segmentation Scheme," Proceedings of the 2019 IEEE/SICE International Symposium on System Integration, Paris, France, Jan. 2019, pp. 502-506. 
  6. H. Gajjar, S. Sanyal, and M. Shah, "A comprehensive study on lane detecting autonomous car using computer vision," Expert Systems With Applications, vol. 233, no. 15, Dec. 2023, pp. 1-15. 
  7. S. Bisht, N. Sukumar, and P. Sumathi, "Integration of Hough Transform and Inter-Frame Clustering for Road Lane Detection and Tracking," 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada, May 2022, pp. 1-6. 
  8. A. Istiningrum, U. Salamah, and N. P. T. Prakisya, "Lane Detection With Conditions of Rain and Night Illumination Using Hough Transform," 2022 5th International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 2022, pp. 429-434. 
  9. S. Liu, L. Lu, X. Zhong, and J. Zeng, "Effective Road Lane Detection and Tracking Method Using Line Segment Detector," Proceedings of the 37th Chinese Control Conference, Wuhan, China, July 2018, pp. 5222-5227. 
  10. M. Guerrieri and G. Parla, "Flexible and stone pavements distress detection and measurement by deep learning and low-cost detection devices," Engineering Failure Analysis, vol. 141, Nov. 2022, pp. 1-18. 
  11. M. Singh, G. Jagyasi, H. Pachar, and S. Kingsly, "High Accuracy Lane Line Detection System using Enhanced Yolo V3," 2023 IEEE World Conference on Applied Intelligence and Computing (AIC), Sonbhadra, India, July 2023, pp. 675-680. 
  12. Y. Qian, J. M. Dolan, and M. Yang, "DLT-Net: Joint Detection of Drivable Areas, Lane Lines, and Traffic Objects," IEEE Transactions On Intelligent Transportation Systems, vol. 21, no. 11, Nov. 2020, pp. 4670-4679.  https://doi.org/10.1109/TITS.2019.2943777
  13. V. Kamath and R. A., "Deep learning based object detection for resource constrained devices: Systematic review, future trends and challenges ahead," Neurocomputing, vol. 531, 2023, pp. 34-60. 
  14. D. Qiao, X. Wu, and T. Wang, "A Lane Recognition Based on Line-CNN Network," 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, Apr. 2020, pp. 96-100. 
  15. J. Zhang, F. Yan, W. Liu, and T. Deng, "A Robust Lane Detection Model via Vertical Spatial Convolutions," 2021 IEEE Intelligent Transportation Systems Conference (ITSC), Indianapolis, USA. Sept. 2021, pp. 2835-2840. 
  16. U. Shukla, A. Mishra, S G. Jasmine, V Vaidehi, and S. Ganesan, "A Deep Neural Network Framework for Road Side Analysis and Lane Detection," Procedia Computer Science, vol. 165, 2019, pp. 252-258.  https://doi.org/10.1016/j.procs.2020.01.081
  17. P. Lu, S. Xu, and H. Peng, "Graph-Embedded Lane Detection," IEEE Transactions On Image Processing, vol. 30, Feb. 2021, pp. 2977-2988.  https://doi.org/10.1109/TIP.2021.3057287
  18. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, Apr. 2018, pp. 834-848.  https://doi.org/10.1109/TPAMI.2017.2699184
  19. B. Kim, M. Park, J. Kim, Y. Do, S. Oh, and H. Yoon, "Analysis Temporal Variations Marine Debris by using Raspberry Pi and YOLOv5," J. of The Korea Institute of Electronic Communication Sciences, vol. 17, no. 6, 2022, pp. 1249-1258. 
  20. B. Kim, Y. Im, S. Shin, J. Lee, and S. Chu, "Analysis of Floating Population in Schools Using Open Source Hardware and Deep Learning-Based Object Detection Algorithm," J. of The Korea Institute of Electronic Communication Sciences, vol. 17, no. 1, 2022, pp. 91-98. 
  21. M. Choi and M. Moon, "Analysis System for Public Interest Report Video of Traffic Law Violation based on Deep Learning Algorithms," J. of The Korea Institute of Electronic Communication Sciences, vol. 18, no. 1, 2023, pp. 63-70.