DOI QR코드

DOI QR Code

STUDY THE STRUCTURE OF DIFFERENCE LINDELÖF TOPOLOGICAL SPACES AND THEIR PROPERTIES

  • ALI A. ATOOM (Department of Mathematics, Faculty of Science, Ajloun National University) ;
  • HAMZA QOQAZEH (Department of Mathematics, Faculty of Arts and Science, Amman Arab University) ;
  • NABEELA ABU-ALKISHIK (Department of Mathematics, Faculty of Science, Jerash University)
  • Received : 2022.06.28
  • Accepted : 2024.02.16
  • Published : 2024.05.30

Abstract

In this paper, the concept of D-sets will be applied to create D-lindelöf spaces, a new type of topological space covering the property. This is performed by using a D-cover, which is a special type of cover. The primary purpose of this work is to introduce the principles and concepts of D-lindelöf spaces. We look into their properties as well as their relationships with other topological spaces. The basic relationship between D-lindelöf spaces and lindelöf spaces, as well as many other topological spaces, will be given and described, including D-compact, D-countably compact, and D-countably lindelöf spaces. Many novel theories, facts, and illustrative and counter-examples will be investigated. We will use several informative instances to explore certain of the features of the Cartesian product procedure across D-lindelöf spaces as well as additional spaces under more conditions.

Keywords

References

  1. Ali.A. Atoom, H. Qoqazeh, and N. Abu Alkishik, Lindlof Perfect Functions, JP Journal of Geometry and Topology 26 (2021), 91-101.  https://doi.org/10.17654/GT026020091
  2. Ali A. Atoom, Study of pairwise omega compact spaces, Global Journal of Pure and Applied Mathematics 11 (2018), 1453-1459. 
  3. Ali A. Atoom, H. Qoqazeh, Y. Al-Qudah, ali Jaradat, Nabeela Abu Alkishik, Pairwise lindelo perfect functions, J. Math. Comput. Sci. 11 (2021), 1-15. https://doi.org/10.28919/jmcs/6655 
  4. Ali A. Atoom, On pairwise omega perfect functions, J. Math. Comput. Sci. 12 (2022). https://doi.org/10.28919/jmcs/6919 
  5. M. Al-Hawari And W. Gharaibeh, Study of Young inequalies for matrices, J. Appl. Math. & Informatics 41 (2023), 1181-1191. https://doi.org/10.14317/jami.2023.1181 
  6. S. Balasubramanian, Generalized separation axioms, Scientia Magna 6 (2010), 1-14. 
  7. S. Balasubramanian and M. Lakshmi Sarada, GPR- separation axioms, Bull. Kerala Math. Association 6 (1999), 8( 3) ( 2011 ), 157-173. 
  8. F. Bani-Ahmad, O. Alsayyed and Ali A. Atoom, Some new results of difference perfect functions in topological spaces, Aims Mathematics 7 (2022), 20058-20065.  https://doi.org/10.3934/math.20221097
  9. M. Caldas, A separation axioms between semi-T0 and semi-T1, Mim. Fac. Sci. Kochi Univ. Ser. A (Math.) 181 (1997), 37-42. 
  10. M. Caldas and S. Jafari, On δD-sets and associated separation axioms, Bull. Malaysian Math. Sc. Soc.(Seconed Series) 25 (2002), 173-185. 
  11. M. Caldas, D.N. Georgiou and S. Jafari, Characterizations of low separation axioms via α-open sets and α-closure operator, Bol. Soc. Paran. Mat. 21 (2003), 1-14. 
  12. E. Ekici and S. Jafari, On D-sets and decompositions of continuous, A-continuous and AB-continuous functions, Italian journal of Pure and Applied Mathematics-N 24 (2008), 255-264. 
  13. R. Engleking, General topology, Heldermann Verlag Berlin, 1989. 
  14. E. Hatir and T. Noiri, On separation axiom CDi, Commun. Fac. Sci. Univ. Ank, Series A1 47 (1998), 105-110. 
  15. S. Jafari, On weak separation axiom, Far East J. Math. Sci. 3 (2001), 779-789. 
  16. M.A. Jardo, iD-sets and associated separation axioms, J.Edu. and Sci. 28 (2012), 37-46.  https://doi.org/10.33899/edusj.2019.160912
  17. A. Keskin and T. Noiri, On bD-sets and associated separation axioms, Bulletin of the Iranian Mathmatic Society 35 (2009), 179-198. 
  18. S.I. Mahmood and A.A. Abdul-Hady, Weak soft (1 , 2)*-${\tilde{D}}_{\omega}$-sets and weak soft (1 , 2)*-${\tilde{D}}_{\omega}$-separation axioms in soft bitopological spaces, Al-Nahrain Journal of Science 22 (2019), 49-58.  https://doi.org/10.22401/ANJS.22.2.07
  19. P.E. Long, An introduction to general topology, Charles E.Merrill Publishing Co., Columbus, Ohio, 1986. 
  20. P. Padma, A.P. Dhanabalan and S. Udaya Kumar, Q*D-sets in topological space, Acta Ciencia Indica 2 (2017), 135-140. 
  21. H. Qoqazah, Y. AL-Qudah, M. AL-Mousa and A. Jaradat, On D- compact topological spaces, Journal of Applied Mathematics and Informatics 39 (2021), 883-894.  https://doi.org/10.14317/JAMI.2021.883
  22. H. Qoqazeh, A.A. Atoom, A. Jaradat, E. Almuhur, N. Abu-Alkishik, A new study on tri-lindelof spaces, Wseas Transcations on Mathematics 22 (2023). 
  23. J. Tong, A separation axioms between T0 and T1, Ann. Soc. Sci. Bruxelles. 96 (1982), 85-90. 
  24. N. Vithya, On b#D sets and associated separation axioms, Taga Journal 14 (2018), 3314-3326