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STUDY THE STRUCTURE OF DIFFERENCE LINDELÖF

TOPOLOGICAL SPACES AND THEIR PROPERTIES

ALI A. ATOOM∗, HAMZA QOQAZEH AND NABEELA ABU-ALKISHIK

Abstract. In this paper, the concept of D−sets will be applied to create

D−lindelöf spaces, a new type of topological space covering the property.

This is performed by using a D−cover, which is a special type of cover.
The primary purpose of this work is to introduce the principles and con-

cepts of D−lindelöf spaces. We look into their properties as well as their

relationships with other topological spaces. The basic relationship between
D−lindelöf spaces and lindelöf spaces, as well as many other topological

spaces, will be given and described, including D−compact, D−countably

compact, and D−countably lindelöf spaces. Many novel theories, facts, and
illustrative and counter-examples will be investigated. We will use several

informative instances to explore certain of the features of the Cartesian
product procedure across D-lindelöf spaces as well as additional spaces un-

der more conditions.
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D−continuous function.

1. Introduction and introductory definitions

Open sets play a crucial role in defining several types of sets and various
topological properties regarding these concepts in general topology. Tong [23]
pioneered the study of D−sets in topology as a difference of two open sets sub-
jected to additional criteria in 1982. He also introduces Db spaces, which are a
new sort of separation axiom. Recently, topological structures have had a lot
of success in the field of general topology by developing new types of sets that
are based on well-known types of sets. In our introduction, we give you, dear
reader, an outline of these investigations as follows: Caldas cite [9] uses semi
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open sets, it is mean sm−Dbsets, to define semi D−sets in 1997. At that time,
he develops a fresh set of separation axioms called sm−Db spaces. We find the
connections between these separation axioms and the well-known Db axioms.
Since then, several authors have looked at the issue of how these new separation
axioms are related. Hatir and Noiri [14] define C∗ −D−sets as a distinction be-
tween C∗−sets in 1998. They use these sets to define C∗−Db, C

∗−D−compact
space, as semi-open sets. In 2001, Jafari, [15] developed the idea of p−open
sets and employed these definitions to produce p − r − D−sets. He explained
the concept of p−Db spaces. The consequences of these axioms are examined.
Caldas and Jafari, [10], created the idea of D−sets and proposed new separation
axioms in 2002. The properties of these separations were investigated in depth.
Caldas et. al. [11] presented crucial new concepts in 2003, based primarily on
β−open sets dubbed β −Db (b = 0, 1, 2) spaces at the time. These separations’
qualities were investigated. Following these key works on the subject, several
research challenges attempting to study new types of continuous functions were
discussed. D−sets, D−SM−sets, D−continuity, and D−SM−continuity were
introduced by Ekici and Jafari [12] in 2008. After one year, Keskin and Noiri
[17] presented the idea of bD−sets using bD−open sets. They use these ideas
to formulate several axioms of weak separation. The implications of these novel
separation axioms are acquired when compared to previous well-known axioms.
As a new area in general topology, many interesting results have been pre-
sented and published. Through the study of q − Dbspaces, Balasubramanian
[6] demonstrated the generalization of previously known separation axioms in
2010. Balasubramanian and Lakshim [7] define q−p− r−Db (b = 0, 1, 2) spaces
in 2011 and go into great detail about them. In addition, in 2012, Jardo [16]
introduced the notion of Db−sets, which is based on its definition and research
of topological features on b−open sets. Db−spaces are among the separation
axioms addressed. [20] Padma et al. The idea of G∗ − D−sets was put up by
P.P in 2017 and they employ G∗−open sets to create a new separation axiom,
G∗ −Db (b = 0, 1, 2) spaces. The links between G∗ −Db (b = 0, 1, 2) sets and
various forms of D−sets are investigated, including D, p − r − D, sm − D,
β−D, q−D and q−p−r−sets. Soft (i , j)

∗ −omega difference sets (briefly soft

(i , j)
∗−D̂w-sets) and weak variants of soft (i , j)

∗ −omega difference sets were
described by Sabiha and Abdul-Hady [18] in soft bitopological spaces in 2019.
They studied the properties of several sorts of soft separation axioms, such as
soft (i , j)

∗ − w − D̂k−spaces, using these soft sets. In 2021, Qoqazeh et al.
[21] established the concept of D−compact spaces. In this paper, the concept
of D−sets will be applied to create D−lindelöf spaces, a new type of topolog-
ical space covering property. This is performed by using a D−cover, which is
a special type of cover. The primary purpose of this work is to introduce the
principles and concepts of D−lindelöf spaces. We look into their properties as
well as their relationships with other topological spaces.The basic relationship
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between D−lindelöf spaces and lindelöf spaces, as well as many other topolog-
ical spaces, will be given and described, including D−compact, D−countably
compact, and D−countably lindelöf spaces. Many novel theories, facts, and
illustrative and counter-examples will be investigated. Using demonstrative in-
stances, some properties of the cartesian product procedure among D−lindelöf
spaces as well as additional spaces will be investigated with more conditions. Un-
less otherwise stated, (Q, γ) and (W, θ) or (Q andW ) refer to topological spaces.
CL (L) and Int (L) will be used to represent γ−closure and γ−interior of a set
L, respectively. The product of γ1 and γ2 will be symbolized by the number
γ1 × γ2. You can look up some of the key terms we’ll be using in this essay,
like: D−set([9]), D−cover([21]), locally indiscrete ([10]), (Db, b = 0, 1, 2)([22]),
D−countably compact([21]), Lindelöf perfect( [1]), [2], [3], [4], [5].

2. Between difference lindelöf spaces and difference compact spaces

In this part, the idea of D−lindelöf spaces in topological spaces is introduced,
the differences between D−compact and D−lindelöf spaces are discussed, and
provides examples and counter examples to illustrate the concepts.

Definition 2.1. If every D−cover in a topological space (Q, γ) has a countable
subcover, the space is said to be D−lindelöf.

Definition 2.2. The space is referred to as D−lindelöf, in the event that each
D−cover in (Q, γ) has a countable subcover.

Theorem 2.3. Every D−lindelöf space is lindelöf space.

Proof. The open cover of (Q, γ) is assumed to be R̆ = {Rη : η ∈ Σ} Ğ is a
D−cover, that is, there is a countable subcover, which is another factor. □

The case that follows demonstrates that the previously stated theorem’s re-
verse is not constantly true.

Example 2.4. Let Q = R,although (Q, γcof ) is lindelöf, but it is not D−lindelöf.
Any set of the type Q−{q} , q ∈ R is recognized as an open set in (Q, γcof ). Let
G = Q − {y} and H = Q − {q}, then G − H = {q}, on the other hand, is a

closed D−set. As a result, Q̃ = {{q} : q ∈ R} is a D−cover of (Q, γcof ) , It

does not have a countable subcover If Q̃ = {{q} : q ∈ R}has a countable subcover

{{q1} , {q2} , ... , {qn} , .....}, we have Q ⊆
∞⋃
b=1

{qb}, Q is a subset of a set.

Which is a contradiction.

Corollary 2.5. Every D−compact space is D−lindelöf space.

Proof. We achieve the results in [21], and every D−lindelöf space is lindelöf
space (theorem 2.2). □

The following instances demonstrate their relationship:
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Example 2.6. Let Q = R and γ = {ϕ,Q, {8} , Q− {8}}. Hence, (Q, γ) is a
D−lindelöf space since it is a D−compact space.

Example 2.7. Let Q = R. Then (Q, γu) is not a D−compact space, and so is
not D−lindelöf space. Since ∀ v ∈ N Given Gv = (−v , v) then the open cover

Ğ = {Gv : v ∈ N} is a difference cover as well, despite not having a countable
subcover.

The contrary of the aforementioned theorem is demonstrated by the case that
follows:

Example 2.8. Let Q = R. (Q, γ
l.r
) is not lindelöf space, and as a result, it is

not a D−lindelöf space.

According to corollary 2.8, the opposite of the prior premise may be true
under additional circumstances, as shown by the following theorem.

Corollary 2.9. Each D−set is closed and open in a locally indiscrete space.

Proof. Let R̀ = G − H be two open sets. Allow closed sets G and H. When
that happens, they become closed and open sets, like R since it represents the
difference between two of them. □

Theorem 2.10. Each locally indiscrete compact topological space (Q, γ) is D−
lindelöf.

Example 2.11. Let Q = R. Since it is lindelöf, it is obvious that the locally
indiscrete (Q, τind) is D−lindelöf.

Example 2.12. Let Q = R and γ = {∅, Q,Q− {7} , {7}}. Then (Q, γ) is
D−lindelöf.

The following instances show that the converse is not ever the caes :

Example 2.13. Suppose that Q be an infite set, then (Q, γ) is D−lindelöf space,

and is not D−compact space.

Example 2.14. Let γs denote Sorgenfrey line, then (Q, γs) is D−lindelöf space,
and is not D−compact space.

Example 2.15. Let γcoc, denote the cocountable topology, then (Z, γcoc) is
D−lindelöf space, and is not D−compact space.

Example 2.16. Let Q = R, γ = γcoc, then any set of the form R−{z1, z2} is an
open set, so OZ = R−{z1, z2}, Ow = R−{w1, w2},are open sets in γcoc. Therefor,
OZ −Ow = {w1, w2}, or OZ −Ow = {w1}, or OZ −Ow = {w2}, then any set of
the forms { q1}, {q1, q2} are D−sets in (R, γcoc), so it is D−lindelöf space, so
that is lindelöf space, but (R, γcoc) is not D−compact and in addition it is not
compact space.

Example 2.17. If Q is countable, then (Q, γ) is D−lindelöf space, then (N, γdis) is
D−compact .
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3. Some properties of difference between Lindelöf Spaces

Within this section, we discuss some of the properties of D−lindelöf spaces
as well as their relationships to other spaces, as well as many other topolog-
ical spaces, will be given and described, including D−compact, D−countably
compact, and D−countably lindelöf spaces.

Theorem 3.1. For any topology on Q, (Q, γ) is a D−lindelöf space if Q is a
countable set.

Proof. Suppose Q = {q1 , q2 , ... , qn, ....} be a countable set.

Let R̆ = {Rη : η ∈ Σ} be a D−cover of Q. Now ∀ qb ∈ Q, choose Rb ∈ R̆

such that qb ∈ Rb. Consequently, a countable subcover of R̆ for Q is R∗ =
{R1 , R2 , ....}Then Q is a D−lindelöf. □

Remark 3.2. A D−set is any point at which two D−sets intersect.

Proof. Suppose R1 = G1 − H1 and R2 = G2 − H2 be any two D−sets, then
R1 ∩R2 = (G1 ∩G2)− (H1 ∪H2) is a D−set. □

Using the principle of mathematical induction, it is simple to show the fol-
lowing corollary:

Remark 3.3. A D−set need not be present in the union of any D−sets.

Example 3.4. Let Q = {l, j, k} and γ = {ϕ,Q, {l} , {k} , {l, k} , {j, k}}.
Then R1 = {l} = {l, k} − {j , k} and R2 = {j} = {j , k} − {k} are two D−sets.
But R1 ∪ R2 = {l , j}is not a D−set. Since {l , j} ̸= G − H where G and H
are two open sets and Q ̸= G.

Theorem 3.5. If Rη is a differnce set in Q, then Rη ∩ L is a differnce set in
(L, γL).

Proof. Suppose Rη is a D−set in Q; in that case, Rη = T−E. T and E are open
sets in Q and T ̸= Q, respectively. Rη ∩L = (T − E)∩L = (T ∩ L)− (E ∩ L) =
Tη − Eη is a D−set in (L, γL). Note that Tη, Eη ∈ γL. □

Theorem 3.6. If (L, γL) is D−lindelöf, Afterwards there is a countable subcover
for each and every cover of L.

Proof. Presume that (L, γL) is a D−lindelöf space and that R̆ = {Rη : η ∈ Σ}
is a D−cover of L . ∀ η ∈ Σ, R∗

η = Rη ∩ L is a difference sets in L, so that

R̆∗
η =

{
R∗

η : η ∈ Σ
}
is a difference cover of L. R̆∗

η has a countable subcover for

L in the form
{
R∗

η1
, R∗

η2
, ... ..

}
because R̆ ⊂ Q and (L, γL) is difference

lindelöf. □

The following corollary can be established using the same procedures as in
theorem3.8.
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Corollary 3.7. Let L ⊆ (Q, γ). All of the covers for L by D−sets in Q must
have a countable subcover in order for (L, γL) to be D−lindelöf .

Theorem 3.8. If O is a base for Q. If (Q, γ) is D−lindlöf, Consequently, each
difference cover produced by O′s elements has a countable subcover.

Theorem 3.9. Each D−cover produced by the elements of a base O of Q has
a countable subcover if (Q, γ) is D−lindelöf.

Proof. Take into account that is a D−lindelöf space, R̆ = {Rη : η ∈ Σ} is a
D−cover of Q produced by elements in O, and O is a base of Q, therefore it has
a countable subcover. □

Theorem 3.10. Let γ1 ⊆ γ2 and (Q, γ1),(Q, γ2) are topological spaces and .
Given that (Q, γ2) is D−lindelöf, (Q, γ1) must also be.

Proof. Assuming (Q, γ1) is a D−cover, let R̆ = {Rη : η ∈ Σ} Due to γ1 ⊆ γ2, R̆
is likewise a D−cover of (Q, γ2). A countable subcover exists as a result. □

Theorem 3.11. A D−lindelöf space’s closed subspaces are all D−lindelöf.

Proof. L is its closed subset given a D−lindelöf space Q. Assume R̆∪{Q− L}is
a D−cover of Q, A countable subcover R̆∗

η is therefore present because Q is

D−lindelöf. Consequently, R̆∗
η − {Q− L} is a countable subcover of R̆ for

L. □

Theorem 3.12. A D−lindelöf space’s closed subspaces are all lindelöf .

Proof. Given a D−lindelöf space Q, let L be its closed subset, Ğ = {Gη : η ∈ Σ}
is a cover for L, Ğ∪ {Q− L} is a cover for Q. Consequently, Ğ∗ −{Q− L} is a

countable subcover of Ğ since Q is a D−lindelöf. □

Theorem 3.13. Let (Q, γ) is D2−space. If a D−lindelöf C ⊂ Q, is a locally
indiscrete, then ∀q /∈ C, ∃ Tq , Tw ∋ q ∈ Tq, C ⊆ Tw and Tq ∩ Tw = ϕ.

Proof. Assume q ∈ Q − C, and ∀ w ∈ C,then q ̸= w. Given that Q is a
D2−space, ∃ T1w , T2w ∋ q ∈ T1w , w ∈ T2w and T1w ∩ T2w = ϕ. In the event
that T̂ = {T2w : w ∈ C} is a D−cover of C. T̂ has a countable subcover, R̆∗

η =

{R2w1 , R2w2 , ...}, because C is D−lindelöf. Assume Tw =
∞⋃
b=1

T2wb
and Tq =

∞⋂
b=1

D1wb
, then Tq and Tw are D−sets ∋ q ∈ Tq, C ⊆ Tw and Tq ∩Tw = ϕ. □

We shall give robust and significant outcomes for D−lindelöf spaces in this
work, which will extend the reach of the previously discussed theory. In order
to establish the connection between lindlöf and D−lindelöf , we prove a few
theorems in Hausdorff and D2 spaces.

Theorem 3.14. Assume (Q, γ) is T2−space and C is a D−lindelöf. If C ⊂ Q
then ∀q /∈ C , ∃ an open sets Gq and Hq, ∋ q ∈ Gq, K ⊆ Hq and Gq ∩Hq = ϕ.
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Proof. Let q ∈ Q−C, then ∀ w ∈ C we have q ̸= w. Because Q is a T2−space,
∃ an open sets Gw and Hw ∋ q ∈ Gw , w ∈ Hw and Gw ∩Hw = ϕ. Assume
H̆ = {Hw : w ∈ C}a cover of C, and so H̆ is a D−cover of C. H̆ has a

countable subcover H̆∗ = {Hb1 , Hb2 , ... } because C is D−lindelöf. Suppose

Hq =
∞⋃
i=1

Hwb
and Gq =

∞⋂
b=1

Gwb
, then Hq and Gq are open sets such that

q ∈ Hq, C ⊆ Gq and Hq ∩Gq = ϕ. To clarify the previous fact; if Hq ∩Gq ̸= ϕ
then Hq ∩Gqc ̸= ϕ for c ∈ {1, 2, ...}. So Hqc ∩Gqc ̸= ϕ since Hq ⊆ Hwc

, This is
incongruous. □

Theorem 3.15. A T2 space’s D−lindlöf subsets are all closed.

Proof. Assume (Q, γ) is T2−space and C is a D−lindlöf. If C ⊂ Q, q ∈ Q− C,
then based on a theorem[3.17], ∃ an open sets Hq and Gq ∋ q ∈ Hq, C ⊆ Gq

and Hq ∩Gq = ϕ. q ∈ Hq ⊆ Q−Gq ⊆ Q− C, so it’s open. □

We can demonstrate that in addition to locally indiscrete instead of T2 space
to any spaces and properties D2−space to any subspaces using the same tech-
niques as in theorem3.18.

4. Multiplication of D-lindelöf topology spaces

Many of the features of the Cartesian product procedure between D-lindelöf
spaces along with additional spaces are examined in more detail using examples
in this section.

Theorem 4.1. D-lindelöf is a D-lindelöf space’s continuous image.

Theorem 4.2. D−lindelöf is a continuous representation of a D−lindelöf space.

Proof. Assume 𭟋 : Q →
continuous onto

W function and Q is a D−lindelöf space.

Suppose R̆w = {Rη : η ∈ Σ} be a D−cover ofW . R̆q =
{
𭟋−1 (Rη) : η ∈ Σ

}
is a

D−cover of Q. Because
⋃

η∈Σ

𭟋−1 (Rη) = 𭟋−1

( ⋃
η∈Σ

Rη

)
= 𭟋−1 (W ) = Q and

Q is D−lindelöf,
{
𭟋−1 (Rη1) , 𭟋−1 (Rη2) , ......

}
is a countable subcover in R̆q.

Consequently, {Rη1 , Rη2 , ... }is a countable subcover of R̆w . □

Definition 4.3. If any D−set in W ′s inverse image is an open set in Q, then
𭟋 is referred to as the D−irr function.

Theorem 4.4. If Q is lindelöf space, 𭟋 : Q −→ W
D−irr function

, then W is D−lindelöfspace

Proof. AssumeQ is a lindelöf space and𭟋 : Q −→ W
D−irr function

is onto function. If R̆w =

{Rη : η ∈ Σ} is a D−cover of W , 𭟋 : Q −→ W
D−irr function

, then R̆q =
{
𭟋−1 (Rη) : η ∈ Σ

}
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is an open cover of Q,
⋃

η∈Σ

𭟋−1 (Rη) = 𭟋−1

( ⋃
η∈Σ

Rη

)
= 𭟋−1 (W ) = Q. Q is

lindelöf, and R̆w has a countable subcover as a result as {𭟋−1 (Rη1) , 𭟋−1 (Rη2) ,

..........}. Consequently,a countable subcover of R̆w is {Rη1
, Rη2

, ...}. □

Theorem 4.5. Assume Q is locally indiscrete space and 𭟋 : Q −→ W
lindlö perfect

a func-

tion, If W is the case, then Q is a D−lindelöf space.

Proof. Because 𭟋 is perfect function, ∀ w ∈ W , ∃ countable subsets ηw of η

such that 𭟋−1 (w) ⊆
⋃

η∈Σ

Rη is an open subset of Q, Yw = Y −𭟋

(
Q−

⋃
η∈Σ

Rη

)
⊂

open
W and 𭟋−1 (Yw) ⊆

⋃
η∈Σ

Rη. Then Ỳ = {Yw : w ∈ W} is an open cover of

W . Because W is D−lindelöf, Ỳ has a countable subcover Ỳ ∗ = {Ywb
}∞b=1

it is mean W =
∞⋃
b=1

Ywb
. Consequently, Q = 𭟋−1 (W ) = 𭟋−1

( ∞⋃
b=1

Twb

)
=

∞⋃
i=1

𭟋−1 (Twb
) and 𭟋−1 (Twb

) ⊆
⋃

η∈Σ

Rη and One or more countable members of

R cover Q. □

Theorem 4.6. Assume that 𭟋 : Q −→ W
lindlö perfect

is a function. Consequently, if W is

D−lindelöf, Q is D−lindelöf.

Proof. The proof is obtained by employing the same method as in the theorm
4.4. □

Theorem 4.7. If (Q, γ) is D−lindelöf, then Ew : Q×W →
projection

W is a perfect

function.

Proof. Because Ew : Q×W →
projection

W is a continuous function,Q isD−lindelöf,

and Q×{w} ≏ Q .Thus, we deduce that Q×{w} is a D−lindelöf. ∀ w ∈ W we
get E−1

w (w) = Q× {w} is D−lindelöf, then it is lindelöf. □

In the end, we demonstrate that Ew is closed. Suppose w ∈ W and E−1
w (w) =

Q × {w} ⊆ G ⊂
open

Q × W. ∀ q ∈ Q , ∃ an open sets Hwq and Gq ∋ q ∈ Gq ,

w ∈ Hwq. Given that Q is a D−lindelöf space, Ǧ has a countable subcover with

the notation {Gqb}∞b=1. Consequently, Tw =
∞⋂
b=1

Hwqb, then Tw is an open set

containing w and E−1
w (Tw) = Q× Tw ⊆ G.

Theorem 4.8. If
∞∏
b=1

Qb is D−lindelöf, then Qb is D−lindelöf. ∀b = 1, 2, ...
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Proof. =⇒ ) Assume that Ec :
∞∏
b=1

Xb →
continuous onto

Xc function. Since
∞∏
b=1

Xb

is D−lindelöf then Xc is D−lindelöf for all b = 1, 2, ...... □

Corollary 4.9. If ∀b = 1, 2, ..., Qb is D−lindelöf, then
∞∏
b=1

Qb is D−lindelöf.

Proof. By employing the mathematical induction technique of evidence, it is
easy to demonstrate this theoretical direction. □

Theorem 4.10. If Q is D−lindelöf space, W is T2 space and 𭟋 : Q →
continuos

W , then 𭟋 is closed

Proof. Suppose K ⊂
closed

Q. So that K is D−lindelöf. Consequently, 𭟋 (K)

⊂
closed

W . □

5. Conclusions and Future works

One of the most well-known extensions of topological spaces is lindelöf topol-
ogy. In the context of lindelöf topology, we have dedicated this paper to present-
ing unique types of D−cover and separation axioms. These types were created
using D−open sets. We looked at their most basic characteristics and discovered
some connections between them. Some illustrated examples have been provided
to validate the presented conclusions. In section 1, we review certain well-known
definitions, hypotheses, and corollaries, as well as some key findings that will be
used in the next section. In section2, explains how D−lindelöf spaces work by
using the definition, compares D−compact and D−lindelöf spaces, and provides
examples and counter examples to illustrate the concepts. In section 3, we dis-
cuss some of the properties of D−lindelöf spaces as well as their relationships to
other spaces. In section 4, we investigate in further detail some of the properties
of the outcome of the relationship between D−lindelöf spaces as well as addi-
tional spaces. including examples. We intend to examine the following issues to
finish this study path: pairwise D− compact space, pairwise D− lindelöf, D−
lindelöf perfect functions, D−locally compact, pairwise D− countably compact,
see [8], [22].
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