과제정보
This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (NRF-2020R1F1A1A01065912).
참고문헌
- A. Ambrosetti, D. Arcoya and B. Biffoni, Positive solutions for some semipositone problems via bifurcation theory, Differential Integral Equations, 7(3) (1994), 655-663. https://doi.org/10.57262/die/1370267698
- T. Ando, A. B. Fowler and F. Stern, Electronic properties of two-dimensional systems,Rev. Modern Phys. 54 (1982), no. 2, 437-672. https://doi.org/10.1103/RevModPhys.54.437
- V. Anuradha, D. Hai and R. Shivaji, Existence results for superlinear semipositone boundary value problems, Proc. Amer. Math. Soc. 124(3) (1996),757-763. https://doi.org/10.1090/S0002-9939-96-03256-X
- T. Bartsch and Z.-Q. Wang, Sign changing solutions of nonlinear Schrodinger equations, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 191-198. https://doi.org/10.12775/TMNA.1999.010
- R. Bialecki and A. J. Nowak, Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions , Appl. Math. Model. 5 (1981), no. 6, 417-421. https://doi.org/10.1016/S0307-904X(81)80024-8
- K. Brown, A. Castro and R. Shivaji, Nonexistence of radially symmetric solutions for a class of semipositone problems, Differential Integral Equations, 2(4) (1989), 541-545. https://doi.org/10.57262/die/1371648444
- K.J. Brown, M.M.A. Ibrahim and R. Shivaji, S - shaphed bifurcation curves, Nonlinear Analysis, 5 (1981), 475-486. https://doi.org/10.1016/0362-546X(81)90096-1
- A. Castro, D. G. de Figueredo and E. Lopera, Existence of positive solutions for a semipositone p-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 3, 475-482. https://doi.org/10.1017/S0308210515000657
- A. Castro, C. Maya and R. Shivaji, Nonlinear eigenvalue problems with semipositone structure, Electron. J. Differential Equations, Conf. 05 (2000), 33-49.
- S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems, Nonlinear Analysis, 41 (2001),149-176. https://doi.org/10.1016/S0362-546X(98)00271-5
- J. M. Cushing, Nonlinear Steklov problems on the unit circle II (and a hydrodynamical application) , J. Math. Anal. Appl. 39 (1972), 267-278. https://doi.org/10.1016/0022-247X(72)90199-0
- R. Dhanya, E. Ko and R. Shivaji, A three solution theorem for singular nonlinear elliptic boundary value problems, J. Math. Anal. Appl., 424 (2015), 598-612. https://doi.org/10.1016/j.jmaa.2014.11.012
- D. Fasino and G. Inglese, Recovering unknown terms in a nonlinear boundary condition for Laplace's equation , IMA J. Appl. Math. 71 (2006), no. 6, 832-852 https://doi.org/10.1093/imamat/hxl021
- G.M. Figueiredo, J.R. Santos Junior and A. Suarez, Structure of the set of positive solutions of a non-linear Schrodinger equation, (English summary) Israel J. Math. 227 (2018), no. 1, 485-505. https://doi.org/10.1007/s11856-018-1752-7
- P. V. Gordon, E. Ko and R. Shivaji, Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion , Nonlinear Anal. Real World Appl. 15 (2014), 51-57. https://doi.org/10.1016/j.nonrwa.2013.05.005
- Y. Guo, Z.-Q. Wang, X. Zeng and H.-S. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity 31 (2018), no. 3, 957-979. https://doi.org/10.1088/1361-6544/aa99a8
- E. Ko, E.K. Lee and R. Shivaji, Multiplicity of positive solutions to a class of Schrodinger-typesingular problems, to appear in Discrete Contin. Dyn. Syst. Ser. S.
- E. Ko, E.K. Lee and I. Sim, Existence of positive solution to Schrodinger-type semipositone problems with mixed nonlinear boundary conditions, Taiwanese J. Math. 25 (2021), no. 1, 107-124. https://doi.org/10.11650/tjm/200702
- E. Ko and S. Prashanth, Positive solutions for elliptic equations in two dimensions arising in a theory of thermal explosion, Taiwanese J. Math. 19 (2015), no. 6, 1759-1775. https://doi.org/10.11650/tjm.19.2015.5968
- P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441-467. https://doi.org/10.1137/1024101
- J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasilinear Schrodinger equations via the Nehari method, Comm. Partial Differential Equations 29 (2004), no. 5-6, 879-901. https://doi.org/10.1081/PDE-120037335
- M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of p-laplacian equations, Differential Integral Equations, 17 (2004), no. 11-12,1255 - 1261. https://doi.org/10.57262/die/1356060244
- P.H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291. https://doi.org/10.1007/BF00946631