DOI QR코드

DOI QR Code

MULTIPLICITY OF POSITIVE SOLUTIONS OF A SCHRÖDINGER-TYPE ELLIPTIC EQUATION

  • Eunkyung Ko (Major in Mathematics, College of Natural Science, Keimyung University)
  • 투고 : 2024.01.23
  • 심사 : 2024.02.27
  • 발행 : 2024.05.31

초록

We investigate the existence of multiple positive solutions of the following elliptic equation with a Schrödinger-type term: $$\begin{cases}-{\Delta}u+V(x)u={\lambda}f(u){\quad} x{\in}{\Omega},\\{\qquad}{\qquad}{\quad}u=0, {\qquad}\;x{\in}\partial{\Omega},\end{cases}$$, where 0 ∈ Ω is a bounded domain in ℝN , N ≥ 1, with a smooth boundary ∂Ω, f ∈ C[0, ∞), V ∈ L(Ω) and λ is a positive parameter. In particular, when f(s) > 0 for 0 ≤ s < σ and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

키워드

과제정보

This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (NRF-2020R1F1A1A01065912).

참고문헌

  1. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620-709. https://doi.org/10.1137/1018114
  2. T. Bartsch and Z.-Q. Wang, Sign changing solutions of nonlinear Schrodinger equations, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 191-198. https://doi.org/10.12775/TMNA.1999.010
  3. K. J. Brown, M. M. A. Ibrahim and R. Shivaji, S - shaphed bifurcation curves, Nonlinear Analysis, 5 (1981), 475-486. https://doi.org/10.1016/0362-546X(81)90096-1
  4. D. Butler, E. Ko, E. Lee and R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2713-2731. https://doi.org/10.3934/cpaa.2014.13.2713
  5. D. Butler, S. Sasi and R. Shivaji, Existence of alternate steady states in a phosphorous cycling model, ISRN Math. Anal. 2012, Art. ID 869147, 11 pp.
  6. S. R. Carpenter, D. Ludwig and W. A. Brock, Management of eutrophication for lakes subject to potentially irreversible change, Ecological Applications, vol. 9 (1999), no 3, 751-771. https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2
  7. M. Cuesta, Q. Ramos and Humberto, A weighted eigenvalue problem for the p-Laplacian plus a potential, NoDEA Nonlinear Differential Equations Appl. 16 (2009), no. 4, 469-491. https://doi.org/10.1007/s00030-009-0026-9
  8. G. M. Figueiredo, J. R. Santos Junior and A. Suarez, Structure of the set of positive solutions of a non-linear Schrodinger equation, (English summary) Israel J. Math. 227 (2018), no. 1, 485-505. https://doi.org/10.1007/s11856-018-1752-7
  9. J. Fleckinger, J. Hernandez and F. de Th'elin, Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 7 (2004), no. 1, 159-188.
  10. Y. Guo, Z.-Q. Wang, X. Zeng and H.-S. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity 31 (2018), no. 3, 957-979. https://doi.org/10.1088/1361-6544/aa99a8
  11. E. Ko, E.K. Lee and R. Shivaji, Multiplicity results for classes of infinite positone problems, Z. Anal. Anwend. 30 (2011), no. 3, 305-318. https://doi.org/10.4171/zaa/1436
  12. E. K. Lee, R. Shivaji and J.Ye, Positive solutions for elliptic equations involving nonlinearities with falling zeroes, Applied Mathematics Letters 22 (2009), 846-851. https://doi.org/10.1016/j.aml.2008.08.020
  13. J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasilinear Schrodinger equations via the Nehari method, Comm. Partial Differential Equations 29 (2004), no. 5-6, 879-901. https://doi.org/10.1081/PDE-120037335
  14. J. Lopez-Gomez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations 127 (1996), no. 1, 263-294. https://doi.org/10.1006/jdeq.1996.0070
  15. P.H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291. https://doi.org/10.1007/BF00946631
  16. M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of p-laplacian equations, Differential Integral Equations, 17 (2004), no. 11-12, 1255-1261.
  17. R. Shivaji, A remark on the existence of three solutions via sub-super solutions. Nonlinear analysis and applications, (Arlington, Tex., 1986), 561-566, Lecture Notes in Pure and Appl. Math., 109, Dekker, New York, 1987.