DOI QR코드

DOI QR Code

Deformation of segment lining and behavior characteristics of inner steel lining under external loads

외부 하중에 따른 세그먼트 라이닝 변형과 보강용 내부 강재 라이닝의 거동 특성

  • Gyeong-Ju Yi (Dept. of Civil Engineering, Inha University / SQ Engineering) ;
  • Ki-Il Song (Dept. of Civil Engineering, Inha University)
  • 이경주 (인하대학교 토목공학과 / 에스큐엔지니어링) ;
  • 송기일 (인하대학교 토목공학과)
  • Received : 2024.05.07
  • Accepted : 2024.05.21
  • Published : 2024.05.31

Abstract

If there are concerns about the stability of segment lining due to section deficiency or large deformation in shield TBM tunnel, reinforcement can be done through ground grouting outside the tunnel or by using steel plate reinforcement, ring beam reinforcement, or inner double layer lining inside the tunnel. Traditional analyses of shield TBM tunnels have been conducted using a continuum method that does not consider the segmented nature of segment lining. This study investigates the reinforcement mechanism for double layer reinforced sections with internal steel linings. By improving the modeling of segment lining, this study applies Break-joint mode (BJM), which considers the segmented characteristics of segment lining, to analyze the deformation characteristics of double layer reinforced sections. The results indicate that the existing concrete segment lining functioned similarly to ground reinforcement around the tunnel, rather than distribution the load. In general, both the BJM model considering the segmentation of segment lining and the continuum rigid method were similar deformation shapes and stress distributions of the lining under load. However, in terms of deformation, when the load strength exceeded the threshold, the deformation patterns of the two models differed.

쉴드TBM 터널에서 단면 부족이나 큰 변형이 세그먼트 라이닝의 안정성에 우려될 경우 터널 외부에 지반 그라우팅으로 보강하거나 터널 내부에 강판 보강, 링 빔 보강, Inner double layer lining으로 보강하는 경우가 있다. 또한, 기존의 쉴드 TBM 터널의 해석은 세그먼트라이닝의 분절 특성을 고려하지 않는 연속체의 강성일체법으로 해석되어왔다. 본 연구는 내부 강재 라이닝으로 보강한 double layer 보강 단면에 대해 보강 메커니즘을 연구하였다. 본 연구는 세그먼트 라이닝에 대한 모델링을 개선하여 세그먼트 라이닝의 분절 특성을 고려한 분절체 모델링(BJM)을 적용하였고 이를 통해 세그먼트 라이닝의 변형 특성을 반영한 double layer 보강 단면을 해석하였다. 연구 결과 기존 콘크리트 세그먼트 라이닝은 하중을 일정부분 분담하는 역할이 아닌 터널 주변 지반을 보강한 것과 같은 역할을 하였다. 일반적으로, 세그먼트 라이닝의 분절을 고려한 BJM 모델과 분절을 고려하지 않는 강성일체법 모두 하중을 받은 라이닝의 변형 형상과 응력 분포가 유사하게 나타났다. 그러나 하중의 강도가 임계치를 넘는 경우 변형의 양상에 차이가 있으며 변형 특성을 보다 면밀히 검토할 수 있는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2023-00245334).

References

  1. Brinkgreve, R.B.J., Kumarswamy, S., Swolfs, W.M. (2015), Reference manual, Plaxis 3D 2015 user's manual, Bentley Systems, pp. 1-284.
  2. Coulomb, C.A. (1785), "Sur l'electricite et le magnetisme", Memoires de l'Academie Royale des Sciences et Belles-Lettres de Paris, pp. 569-611.
  3. Gharehdash, S., Barzegar, M. (2015), "Numerical modeling of the dynamic behaviour of tunnel lining in shield tunneling", KSCE Journal of Civil Engineering, Vol. 19, pp. 1626-1636. https://doi.org/10.1007/s12205-015-0406-0
  4. Hoek, E.C., Diederichs, J. (1993), "The use of the controlled displacement method for tunnel excavation", In Tunnel Engineering and Construction, Thomas Telford Publishing, London, pp. 203-213.
  5. Kim, N.Y., Kang, H.T., Lee, K.H., Lee, S.R., (2021), "Development of TBM design criteria and specification for large section road tunnel", Traffic Research Institute of the Korea Expressway Corporation, pp. 125.
  6. Kim, S.H., Jung, G.J., Jeong, S.S., Jeon, Y.J., Kim, J.S., Lee, C.J. (2017), "A study on the behaviour of prebored and precast steel pipe piles from full-scale field tests and Class-A and C1 type numerical analyses", Journal of the Korean Geo-Environmental Society, Vol. 18, No. 7, pp. 37-47. https://doi.org/10.14481/jkges.2017.18.1.37
  7. Kolic, D., Mayerhofer, A. (2011), "Segmental lining tolerances and imperfections", Proceedings of the ITA WTC 2009 Symposium, Budapest, pp. 8-15.
  8. Lydon, F.D., Balendran, R.V. (1986), "Some observations on elastic properties of plain concrete", Cement and Concrete Research, Vol. 16, No. 3, pp. 314-324. https://doi.org/10.1016/0008-8846(86)90106-7
  9. MIDAS I.T. (2013), GTS NX analysis reference manual, MIDAS Information Technology Co., Ltd.
  10. Oreste, P.P. (1994), "Comportamento di bulloni passivi in galleria: un nuovo modello di simulazione", Gallerie Grandi Opere Sotterranee, Vol. 44, pp. 32-41.
  11. Oreste, P.P. (2003), "Analysis of structural interaction in tunnels using the convergence confinement approach", Tunnelling and Underground Space Technology, Vol. 18, No. 4, pp. 347-363. https://doi.org/10.1016/S0886-7798(03)00004-X
  12. Park, M., Kwon, O.K., Kim, C.M., Yun, D.K., Choi, Y. (2019), "Study(V) on development of charts and equations predicting allowable compressive bearing capacity for prebored PHC piles socketed into weathered rock through sandy soil layers - Analysis of results and data by parametric numerical analysis -", Journal of the Korean Geotechnical Society, Vol. 35, No. 10, pp. 47-66. https://doi.org/10.7843/KGS.2019.35.10.47
  13. Yang, Y., Zhou, B., Xie, X., Liu, C. (2018), "Characteristics and causes of cracking and damage of shield tunnel segmented lining in construction stage - a case study in Shanghai soft soil", European Journal of Environmental and Civil Engineering, Vol. 22, No. Sup 1, pp. s213-s227. https://doi.org/10.1080/19648189.2017.1356243
  14. Yi, G.J., Song, K.I. (2023a), "Dynamic response of segment lining due to train-induced vibration", Journal of Korean Tunnelling and Underground Space Association, Vol. 25, No. 4, pp. 305-330.
  15. Yi, G.J., Song, K.I. (2023b), "The effect of tunnel ovality on the dynamic behavior of segment lining", Journal of Korean Tunnelling and Underground Space Association, Vol. 25, No. 6, pp. 423-446. https://doi.org/10.9711/KTAJ.2023.25.6.423