Acknowledgement
본 연구는 국토교통과학기술진흥원의 건설기술연구사업(RS-2022-00144188) 및 협력거점형 국토교통국제협력 연구개발사업(RS-2024-00410248)의 지원으로 수행되었으며 이에 깊은 감사를 드립니다.
References
- ASTM C143 (2017), Standard test method for slump of hydraulic-cement concrete, ASTM International, Vol. 04.02, pp. 1-4.
- ASTM D4648 (2016), Standard test method for laboratory miniature vane shear test for saturated fine grained clayey soil, ASTM International, Vol. 04.08, pp. 1-7.
- Avunduk, E., Copur, H., Tolouei, S., Tumac, D., Balci, C., Bilgin, N., Shaterpour-Mamaghani, A. (2021), "Possibility of using torvane shear testing device for soil conditioning optimization", Tunnelling and Underground Space Technology, Vol. 107, 103665.
- Chang, I., Im, J., Cho, G.C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, Vol. 8, No. 3, 251.
- Chang, I., Im, J., Prasidhi, A.K., Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Construction and Building Materials, Vol. 74, pp. 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
- Choi, J.Y. (2012), "A study on biopolymer as a future fiber material", Journal of the Korean Society of Design Culture, Vol. 18, No. 1, pp. 481-493.
- EFNARC (2005), Specification and guidelines for the use of specialist products for mechanised tunnelling (TBM) in soft ground and hard rock, European Federation of National Associations Representing for Concrete, pp. 1-45.
- Elliott, J.E., Macdonald, M., Nie, J., Bowman, C.N. (2004), "Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure", Polymer, Vol. 45, No. 5, pp. 1503-1510. https://doi.org/10.1016/j.polymer.2003.12.040
- Galli, M., Thewes, M. (2019), "Rheological characterisation of foam-conditioned sands in EPB tunneling", International Journal of Civil Engineering, Vol. 17, pp. 145-160. https://doi.org/10.1007/s40999-018-0316-x
- Hu, W., Rostami, J. (2020), "A new method to quantify rheology of conditioned soil for application in EPB TBM tunneling", Tunnelling and Underground Space Technology, Vol. 96, 103192.
- Hwang, B., Kang, M., Kwon, K., Yang, J., Choi, H. (2023), "Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer", Journal of Korean Tunnelling and Underground Space Association, Vol. 25, No. 5, pp. 387-401. https://doi.org/10.9711/KTAJ.2023.25.5.387
- Jancsecz, S., Krause, R., Langmaack, L. (1999), "Advantages of soil conditioning in shield tunnelling: experiences of LRTS Izmir", Challenges for the 21st Century: Proceedings of the World Tunnel Congress, Oslo, pp. 865-875.
- Jansson, P.E., Kenne, L., Lindberg, B. (1975), "Structure of the extracellular polysaccharide from Xanthomonas campestris", Carbohydrate research, Vol. 45, No. 1, pp. 275-282. https://doi.org/10.1016/S0008-6215(00)85885-1
- Jung, J. (2018), "Soil-water characteristic curve of sandy soils containing biopolymer solution", Journal of the Korean Geo-Environmental Society, Vol. 19, No. 10, pp. 21-26.
- Karmakar, S., Kushwaha, R.L. (2007), "Development and laboratory evaluation of a rheometer for soil visco-plastic parameters", Journal of Terramechanics, Vol. 44, No. 2, pp. 197-204. https://doi.org/10.1016/j.jterra.2006.10.002
- Khemakhem, M., Attia, H., Ayadi, M.A. (2019), "The effect of pH, sucrose, salt and hydrocolloid gums on the gelling properties and water holding capacity of egg white gel", Food Hydrocolloids, Vol. 87, pp. 11-19. https://doi.org/10.1016/j.foodhyd.2018.07.041
- Kwak, J., Lee, H., Hwang, B., Choi, J., Choi, H. (2022), "A laboratory pressurized vane test for evaluating rheological properties of excavated soil for EPB shield TBM: test apparatus and applicability", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 5, pp. 355-374.
- Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C., Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotechnique Letters, Vol. 10, No. 2, pp. 106-112. https://doi.org/10.1680/jgele.19.00106
- Langmaack, L. (2000), "Advanced technology of soil conditioning in EPB shield tunneling", Proceedings of the North American Tunneling, Vol. 2000, Boston, pp. 525-542.
- Lee, H. (2021), Evaluation on performance of EPB shield tunnelling with foam conditioning, Ph.D. Thesis, Korea University, pp. 1-272.
- Lee, H., Kwak, J., Choi, J., Hwang, B., Choi, H. (2022), "A lab-scale experimental approach to evaluate rheological properties of foam-conditioned soil for EPB shield tunnelling", Tunnelling and Underground Space Technology, Vol. 128, 104667.
- Lee, H., Shin, D., Kim, D.Y., Shin, Y.J., Choi, H. (2019), "Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 4, pp. 545-560. https://doi.org/10.9711/KTAJ.2019.21.4.545
- Li, S., Wan, Z., Zhao, S., Ma, P., Wang, M., Xiong, B. (2022), "Soil conditioning tests on sandy soil for earth pressure balance shield tunneling and field applications", Tunnelling and Underground Space Technology, Vol. 120, 104271.
- Maidl, U. (1995), Erweiterung der Einsatzbereiche der Erddruckschilde durch bodenkonditionierung mit Schaum, Ph.D. Thesis, Institut fur Konstruktiven Ingenieurbau, Ruhr-Universitat Bochum, pp. 1-184.
- Melton, L.D., Mindt, L., Rees, D.A. (1976), "Covalent structure of the extracellular polysaccharide from Xanthomonas campestris: evidence from partial hydrolysis studies", Carbohydrate research, Vol. 46, No. 2, pp. 245-257. https://doi.org/10.1016/S0008-6215(00)84296-2
- Meng, Q., Qu, F., Li, S. (2011), "Experimental investigation on viscoplastic parameters of conditioned sands in earth pressure balance shield tunneling", Journal of Mechanical Science and Technology, Vol. 25, No. 9, pp. 2259-2266. https://doi.org/10.1007/s12206-011-0611-9
- Merritt, A.S., Borghi, F.X., Mair, R.J. (2003), "Conditioning of clay soils for earth pressure balance tunnelling machines", Proceedings of the Underground Construction 2003, London, pp. 455-466.
- Messerklinger, S., Zumsteg, R., Puzrin, A. (2011), "A new pressurized vane shear apparatus", Geotechnical Testing Journal, Vol. 34, No. 2, pp. 112-121. https://doi.org/10.1520/GTJ103175
- Oh, J. (2021), Laboratory study on optimum foam injection condition for EPB shield TBM in weathered granite soil, Master Thesis, Korea University, pp. 1-96.
- Peila, D., Oggeri, C., Vinai, R. (2007), "Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 12, pp. 1622-1625. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1622)
- Petri, D.F.S. (2015), "Xanthan gum: A versatile biopolymer for biomedical and technological applications", Journal of Applied Polymer Science, Vol. 132, No. 23, pp. 1-13.
- Quebaud, S., Sibai, M., Henry, J.P. (1998), "Use of chemical foam for improvements in drilling by earthpressure balanced shields in granular soils", Tunnelling and Underground Space Technology, Vol. 13, No. 2, pp. 173-180. https://doi.org/10.1016/S0886-7798(98)00045-5
- Sulaiman, H., Taha, M.R., Abd Rahman, N., Taib, A.M. (2022), "Performance of soil stabilized with biopolymer materials - xanthan gum and guar gum", Physics and Chemistry of the Earth, Parts A/B/C, Vol. 128, 103276.
- Sworn, G. (2021), Xanthan gum, In Handbook of Hydrocolloids, Woodhead Publishing, pp. 833-853.
- Wiszniewski, M., Cabalar, A.F. (2014), Hydraulic conductivity of a biopolymer treated sand, In New Frontiers in Geotechnical Engineering, ASCE, pp. 19-27.
- Zhou, X., Yang, Y. (2020), "Effect of foam parameters on cohesionless soil permeability and its application to prevent the water spewing", Applied Sciences, Vol. 10, No. 5, pp. 1787-1797. https://doi.org/10.3390/app10051787
- Zumsteg, R., Messerklinger, S., Puzrin, A.M., Egli, H., Walliser, A. (2009), "Pressurized vane shear test for soil conditioning", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, pp. 275-278.