DOI QR코드

DOI QR Code

NEW BEST PROXIMITY POINT RESULTS FOR DIFFERENT TYPES OF NONSELF PROXIMAL CONTRACTIONS WITH AN APPLICATION

  • Khairul Habib Alam (Department of Mathematics, National Institute of Technology Manipur) ;
  • Yumnam Rohen (Department of Mathematics, Manipur University) ;
  • S. Surendra Singh (Department of Mathematics, National Institute of Technology Manipur) ;
  • Kshetrimayum Mangijaobi Devi (Department of Mathematics, Waikhom Mani Girls College) ;
  • L. Bishwakumar (Modern College)
  • Received : 2023.10.11
  • Accepted : 2024.02.17
  • Published : 2024.06.15

Abstract

A new variety of non-self generalized proximal contraction, called Hardy-Rogers α+F-proximal contraction, is shown in this work. Also, with an example, we prove that such contractions satisfying some conditions must have a unique best proximity point. For some particular values of the constants, that we have used to generalize the proximal contraction, we conclude different α+F-proximal contraction results of the types Ćirić, Chatterjea, Reich, Kannan, and Banach with proof, that all such type of contractions must have unique best proximity point. We also apply our result to solve a functional equation.

Keywords

Acknowledgement

The referee's insightful comments on how to strengthen this paper were much appreciated by the writers. The UGC, New Delhi, is supporting Khairul Habib Alam, the first author.

References

  1. J. Ahmad, A. Al-Rawashdeh and A. Azam, New fixed point theorems for generalized F-contractions in complete metric spaces, Fixed Point Theory Appl., 2015(1) (2015), 1-18. https://doi.org/10.1186/1687-1812-2015-1
  2. K.H. Alam and Y. Rohen, Non-self Ciric α+(θ, ψ)-proximal contractions with best proximity point, Palestine Journal of Mathematics, (2024), In press.
  3. K.H. Alam, Y. Rohen and N. Saleem, Fixed points of (α, β, F*) and (α, β, F**)-weak Geraghty contractions with an application, Symmetry, 15(1) 243, (2023), 1-17. https://doi.org/10.3390/sym15010243
  4. H.H. Al-Sulami, N. Hussain and J. Ahmad, Best proximity results with applications to nonlinear dynamical systems, Mathematics, 7(10) (2019).
  5. S. Banach, Sur les operations dans les ensembles abstraits et leur application auxequations integrales, Fund. Math., 3(1) (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
  6. S.S. Basha, N. Shahzad and R. Jeyaraj, Best proximity points: approximation and optimization, Optim. Letters, 7 (2013), 145-155. https://doi.org/10.1007/s11590-011-0404-1
  7. S.K. Chatterjea, Fixed point theorems, C.R. Acad. Bulgare Sci., 25 (1972), 727-730.
  8. L.B. Ciric, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12(26) (1971), 19-26.
  9. A. Eldred, W. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math., 2(171) (2005), 283-293. https://doi.org/10.4064/sm171-3-5
  10. K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234-240. https://doi.org/10.1007/BF01110225
  11. G. E. Hardy and T. Rogers, A generalization of a fixed point theorem of Reich, Canadian Math. Bull., 16(2) (1973), 201-206. https://doi.org/10.4153/CMB-1973-036-0
  12. N. Hussain, M. Hezarjaribi, M. Kutbi and P. Salimi, Best proximity results for Suzuki and convex type contractions, Fixed Point Theory Appl., 2016(1) (2016), 1-20. https://doi.org/10.1186/s13663-015-0491-2
  13. M. Jleli and B. Samet, Best proximity points for α - ψ-proximal contractive type mappings and applications, Bull. Sci. Math., 137 (2013), 977-995. https://doi.org/10.1016/j.bulsci.2013.02.003
  14. R. Kannan, Some results on fixed points-II, Amer. Math. Month., 76(4) (1969), 405-408. https://doi.org/10.1080/00029890.1969.12000228
  15. K. Khammahawong and P. Kumam, A best proximity point theorem for Roger-Hardy type generalized F-contractive mappings in complete metric spaces with some examples, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 112 (2018), 1503-1519. https://doi.org/10.1007/s13398-017-0440-5
  16. S. Komal, D. Gopal, F. Khojasteh, K. Sitthithakerngkiet and P. Kumam, The approximate solution for generalized proximal contractions in complete metric spaces, Thai J. Math., 17 (2019), 200-212.
  17. H. Piri, and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 210 (2014), MR3357360.
  18. S. Reich, Some remarks concerning contraction mappings, Canadian Math. Bull., 14(1) (1971), 121-124. https://doi.org/10.4153/CMB-1971-024-9
  19. Y. Rohen and N. Mlaiki, Tripled best proximity point in complete metric spaces, Open Mathematics, 18(1) (2020), 204-210. https://doi.org/10.1515/math-2020-0016
  20. N. Saleem, M. Abbas and S. Farooq, Best proximity point results in generalized metric spaces, Thai J. Math., 20(2) (2022), 589-603.
  21. L. Shanjit and Y. Rohen, Non-convex proximal pair and relatively nonexpansive maps with respect to orbits, J. Ineq. Appl., 2021(1) (2021), 1-10. https://doi.org/10.1186/s13660-020-02526-2
  22. S. Termkaew, P. Chaipunya, D. Gopal, and P. Kumam, A contribution to best proximity point theory and an application to partial differential equation, Optimization, (2023), 1-33, DOI:10.1080/02331934.2023.2191620.
  23. K. Ungchittrakool, A best proximity point theorem for generalized non-self-Kannan-Type and Chatterjea-type mappings and Lipschitzian mappings in complete metric spaces, J. Funct. Spaces, 2016 (2016).
  24. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012(1) (2012), 1-6. https://doi.org/10.1186/1687-1812-2012-94
  25. J. Zhang, Y. Su and Q. Cheng, A note on A best proximity point theorem for Geraghty-contractions, Fixed Point Theory Appl., 2013(1) (2013), 1-4. https://doi.org/10.1186/1687-1812-2013-1
  26. M. Zhou, N. Saleem, A.F. Roldan Lopez de Hierro and X. Liu, Best proximity point theorems without Fuzzy P-property for several (ψ-φ)-weak contractions in non-Archimedean Fuzzy metric spaces, Mathematics, 10(21) (2022), 4031.